

Manifestazioni ed EEG nel bambino

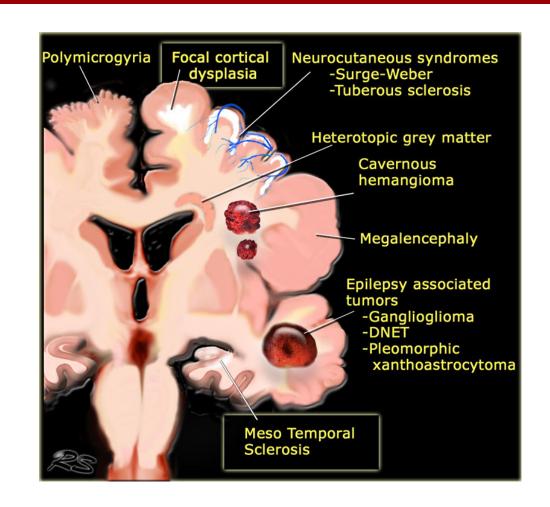
Nicola Specchio Department of Neuroscience Bambino Gesù Children's Hospital, IRCCS, Rome, Italy

CORSO VIDEO EEG LICE
3° EDIZIONE CATANIA, 24-27 OTTOBRE 2021

moundment of the mound of the m

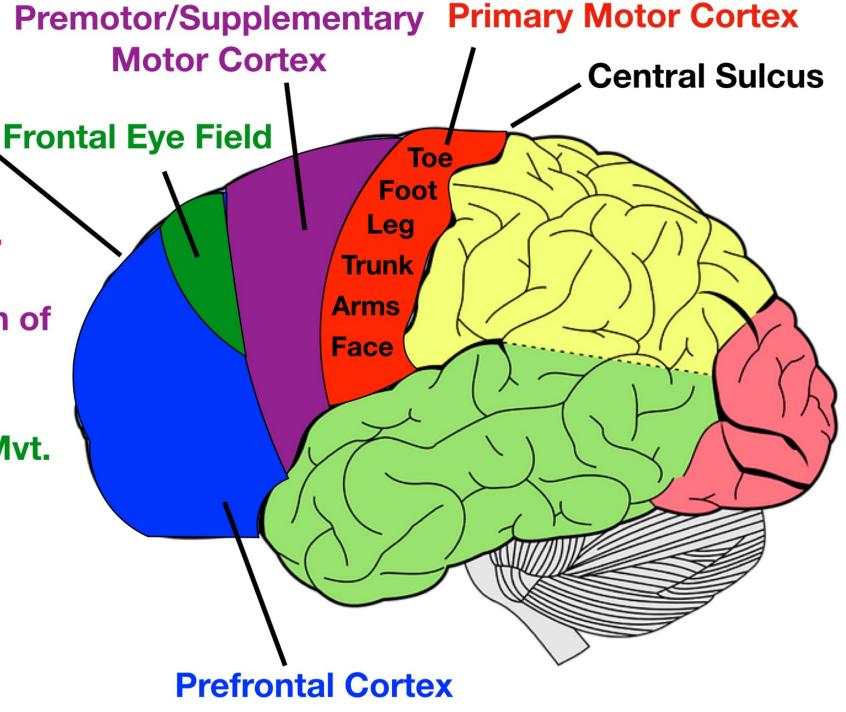
Outline

- Introduction
- Seizure semiology and EEG features
- Lateral and mesial
- Definition of elementary motor signs and gestural motor behavior
- Differential diagnosis
- Examples
- Conclusions


Introduction

- Frontal seizures might be difficult to classify
- Several eloquent areas
- Multiple connections with distant brain areas
- Differences if the involved areas is lateral or mesial, anterior/posterior
- Differential diagnosis with non-epileptic events

Etiologies


- Brain tumors
- Focal cortical dysplasia
- Vascular malformation
- Genetic causes
- Other
 - Gliosis (head trauma)
 - Post-inflammatory scars
 - Birth trauma

Frontal

Functional Areas

- Primary Motor Cortex
 - Voluntary Muscle Mvt.
- Premotor/S.M.C (MAC)
 - Planning/Coordination of Movement
- Frontal Eye Field
 - Voluntary Rapid Eye Mvt.
- Prefrontal Cortex
 - Executive Functions, Behavior, Personality

EEG features

Dorso-lateral

- Frequently bilateral abnormalities
- Multilobar
- Generalized
- Focal cortical spreading
- Muscle artifact
- Repetitive epileptiform activity

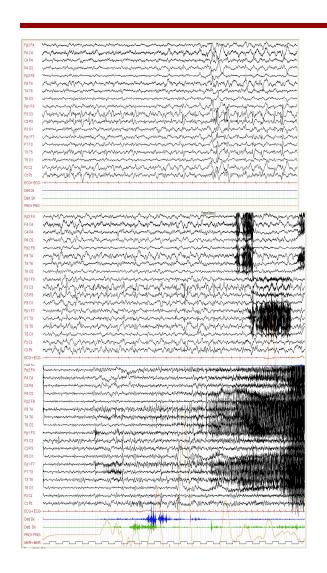
Mesial Frontal

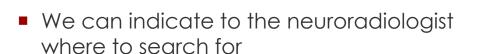
- Inaccessibility of mesial frontal/ orbitofrontal
- Rapid propagation
- Non-lateralizing epileptiform activity
- Focal interictal spikes midline/slowing
- Bilateral asynchronous discharges
- Paroxysmal fast activity/electrodecremental

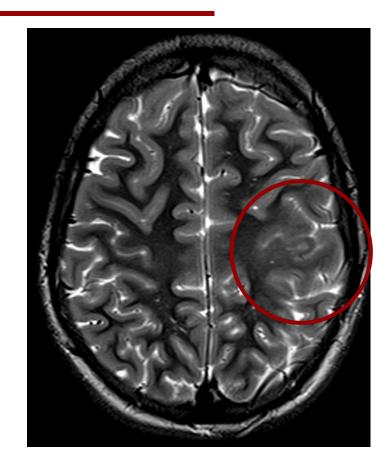
Frequency and lateralizing value of some seizures symptoms and signs in lateral frontal lobe epilepsy

Symptom	Frequency in patients with lateral FLE	Lateralizing value (positive predictive value)
Postictal headache	41–53%	None (in contrast to temporal lobe epilepsy)
Unilateral tonic posturing	37–48%	Contralateral (67–100%)
Vocalization	37–77%	Probably none (contradictory data)
Postictal paresis	27–37%	Contralateral (100%)
Unilateral clonic seizure	23–37%	Contralateral (83-100%)
Head-version	22–60%	Contralateral (66–100%)
Complete loss of consciousness	19%	Nondominant
Focal somato-sensory auras	16–31%	Contralateral (100%)
Unilateral automatisms	16%	Ipsilateral (67%)
Hypermotor seizures	11–38%	None
Nonforced head-turning	11–31%	None
Postictal nose rubbing	10–37%	None
Unilateral dystonic posturing	0–21%	Contralateral (100%)

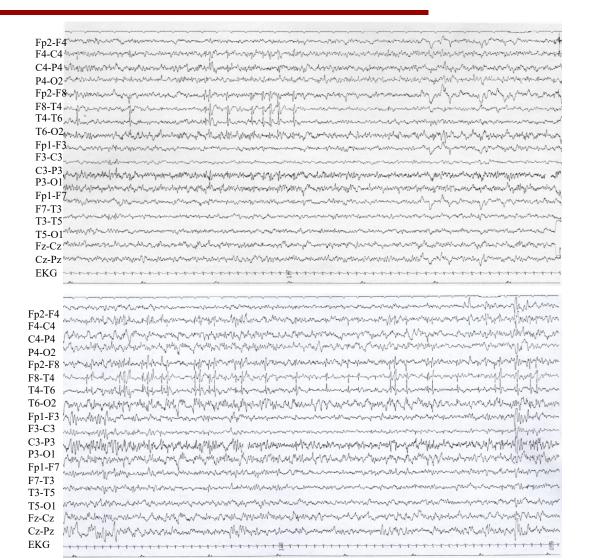
General features

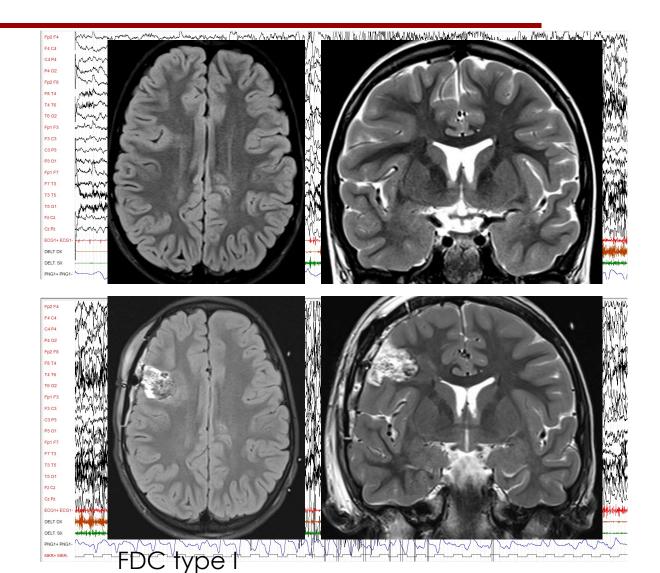

- High seizure frequency (clusters and SE)
- Short duration
- Frequent bilateral tonic-clonic
- Post-ictal headache


In *children* with FLE, the immature cortex architecture might influence seizure semiology; the lack of automatisms and secondary generalization has been attributed to this feature


Luders, 2010

Seizures highly suggest the site: semeiology indicate the primary involvement of eloquent areas (1)

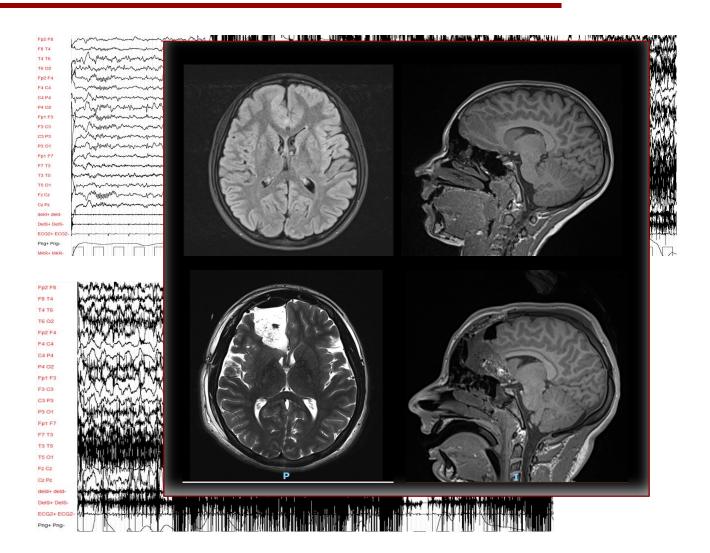




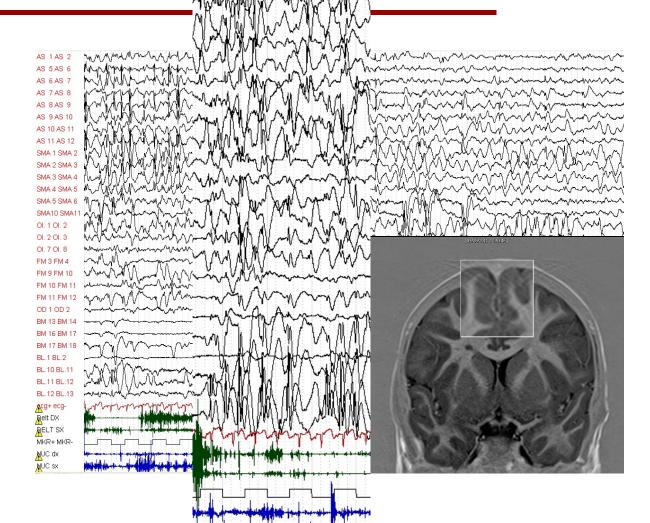
Seizures highly suggest the site: semeiology indicate the primary involvement of eloquent areas (2)

Seizures highly suggest the site: semeiology indicate the primary involvement of eloquent areas (3)

Seizure's symptoms and signs in mesial frontal lobe epilepsy


- Bilateral asymmetric tonic seizures
 - Abrupt onset of tonic posturing
 - 4 limbs might be involved
 - Incoordinate movements
 - Consciousness might be preserved
- Hypermotor seizures
- Frontal lobe absences
- Negative myoclonus

Bilateral asymmetric tonic seizures



Hypermotor seizures (mesial pre-frontal)

Negative myoclonus in symptomatic foc

Few studies focused on pediatric semiology in FLE

Epilepsy Research

Volume 149, January 2019, Pages 83-87

Age-dependent semiology of frontal lobe seizures

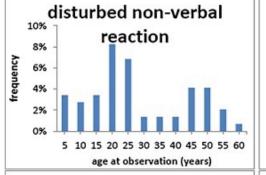
Mandy Hintz a, b A ☑, Valentina Krenz a, b, Andreas Schulze-Bonhage a, b ☑

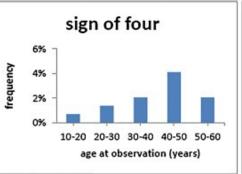
122 patients, diagnosed with frontal lobe epilepsy Onset of epilepsy ranged between 0 and 56 years

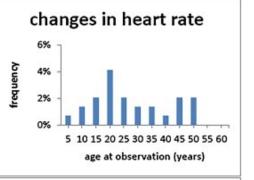
Myoclonic components as most frequent manifestations in children

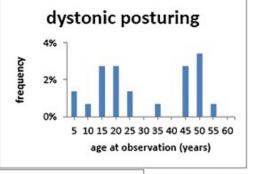
Clonic features and hypermotor components without significant agedependent changes

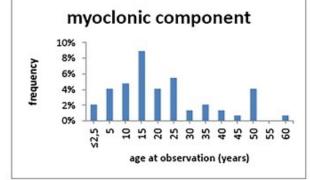
Absence of aura in patients under six years


During the first years of life:


- Signs as aura-like sensations probably underestimated due to limitations in interactions
- Verbal responsiveness less reliably assessable


Semiological signs as consequence of the connectivity within and beyond the frontal lobe and its maturation during life


etiology		n	%
focal cortical dysplasia	- 10 10	58	47.5
	tuberosis sclerosis	3	2.5
tumors		19	15.6
V 2000 2000 000 000 000	neurodevelopmental tumor	7	5.7
infection		3	2.5
posttraumatic		3	2.5
perinatal lesion	N .	2	1.6
hemorrhage residual		2	1.6
cavernoma		2	1.6
focal cortical dysplasia or tumor		2	1.6
other		4	3.3
unknown		27	22.1
overall	•	122	100.0



Clinical Research

A Detailed Analysis of Frontal Lobe Seizure Semiology in Children Younger Than 7 Years

*,†András Fogarasi, *,‡József Janszky, *Eduardo Faveret, *Tom Pieper, and *Ingrid Tuxhorn

Epilepsia. 2012

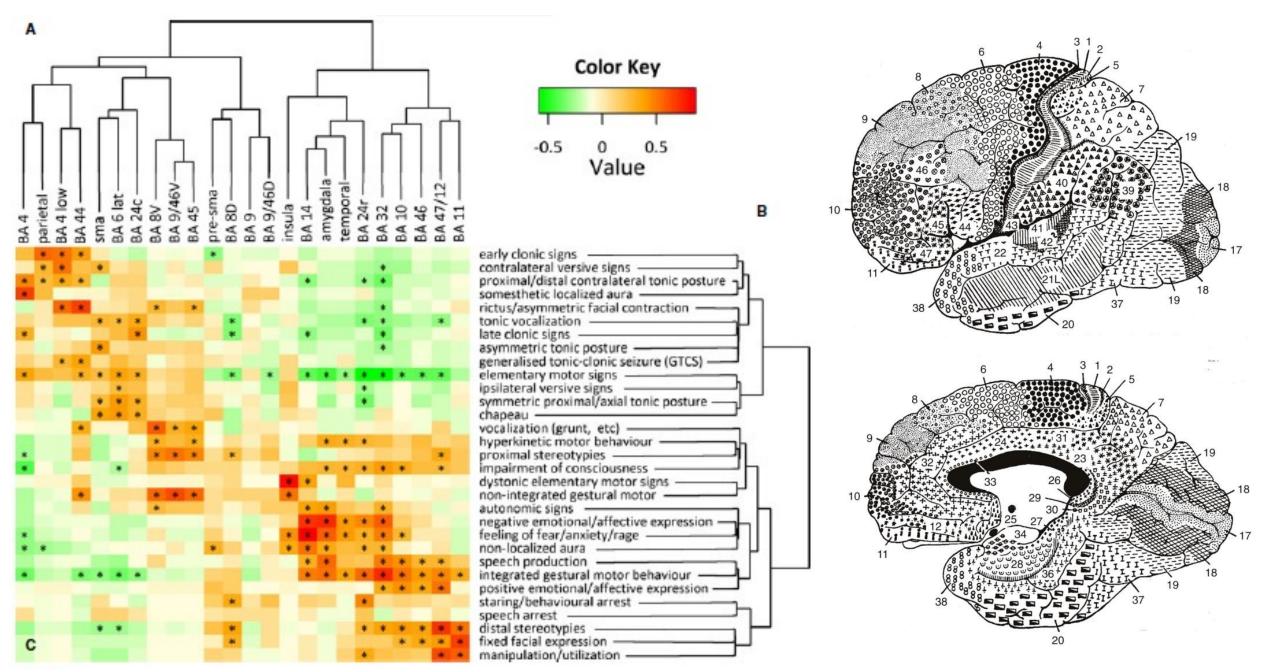
14 patients with medically refractory FLE based on focal cortical dysplasia, aged 3-81 months (mean 30 months)

Frequent epileptic spasms and behavioural changes

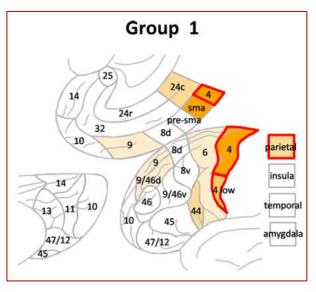
Rare focal seizures with evolution in GTCs

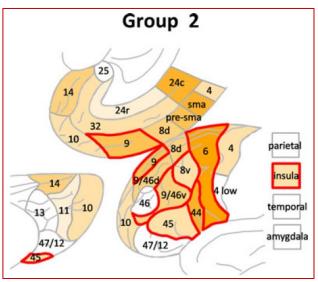
Absence of hypermotor seizures and motor automatisms

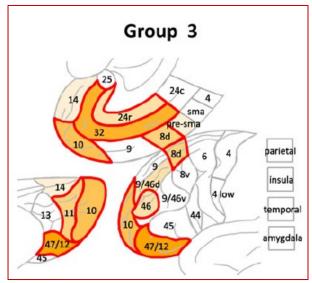
Seizure type	Frequency among patients	Frequency among seizure onsets	
Tonic	9 (64%)	39 (35%)	
Clonic	5 (36%)	27 (24%)	
Epileptic spasm	5 (36%)	18 (16%)	
Myoclonic	1 (7%)	7 (6%)	
Psychomotor	2 (14%)	8 (7%)	
Hypomotor	2 (14%)	6 (5%)	
Unclassified motor	1 (7%)	4 (4%)	
Isolated aura	1 (7%)	2 (2%)	
Total	14 patients	111 seizures	
	$(100\%)^a$	(100%)	

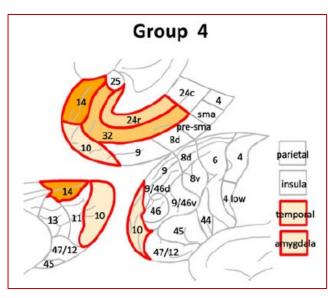


Patient no./	Age at epilepsy onset (mo)	Age at video recording (mo)	Daily seizure frequency	Localization by 1. MRI lesion 2. PET hypometabolism 3. EEG seizure pattern	Engel class	Duration of follow-up (mo)	Seizure onset and → evolution
1/F	1	3 and 14	4 series	R precentral R precentral R precentral	IA	29	a, clonic (started with BC) b, tonic
2/F	3	6	2-4	R frontomesial Normal R precentral	III A	38	a, ES b, hypomotor (started with BC)
3/F	1	10 and 14	5-30	R dorsolateral R frontal	IA	24	Clonic → tonic → clonic
4/F	1	10 and 26	3-40 series	L precentral L precentral L precentral L precentral R centroparietal	III A	35	a, clonic b, psychomotor
5/F	2	12 and 36	4-6 series	R frontomesial R precentral R frontocentroparietal	IA	16	a, tonic → ES b, tonic → psychomotor
6/M	1	13 and 18	5-15	L frontal L frontomesial	IA	3	Tonic
7/M	11	19	10 series	R precentral R occipital R frontotemporooccipital R precentral	IA	7	Myoclonic → tonic → myoclonic
8/M	7	23	2-4	L dorsolateral L frontal L frontocentrotemporal	IA	33	a, hypomotor (started with BC) b, unclassified motor
9/M	14	26 and 57	1-4 series	L. frontomesial Normal L. precentral	IA	26	ES
10/F	16	30	2-5 series	R frontopolar R frontal	IA	36	ES (started with BC)
11/F	3	59	6-8 series	R frontomesial R frontal Generalized	IA	6	a, ES b, tonic
12/M	56	68	3-35	L. frontomesial L. centroparietal L. frontomesial	IC	92	Tonic → clonic
13/F	2	68	6	R frontobasal R frontal	IA	27	Tonic (started with BC)
14/M	35	81	2-4	R frontomesial R precentral R frontotemporal R precentral	IA	38	a, clonic b, tonic → clonic c, isolated aura



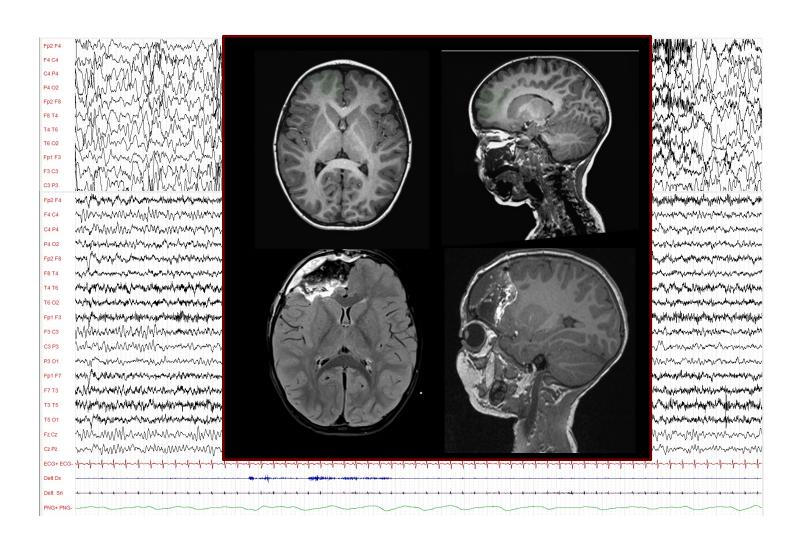

Definition of semiologic terms


- **Elementary motor signs:** clonic movements and tonic or dystonic contraction and/or posturing as well as head and/or eye version.
- **Gestural motor behavior**: the overall (quite heterogeneous) category of complex motor behaviors, readily distinguishable from elementary motor signs.
 - <u>Stereotypies</u>: excessive production of one type of motor act, necessarily resulting in repetition.
 Movements of trunk and limbs (proximal stereotypies), or of hands/feet (distal stereotypies);
 - Hyperkinetic movements: excessive amount of movement (hyperactivity) and/or excessive amplitude, speed, and acceleration.
 - <u>Integrated gestural motor behavior</u>: recognizable, ordered sequences of movement within the seizure (reaching, grasping, pedalling, kicking, tapping, rocking, or hitting). Facial appearance tended to be congruent with other ictal behavioral features
 - Non-integrated gestural motor behavior: disjointed or even anarchic appearance including facial expression.

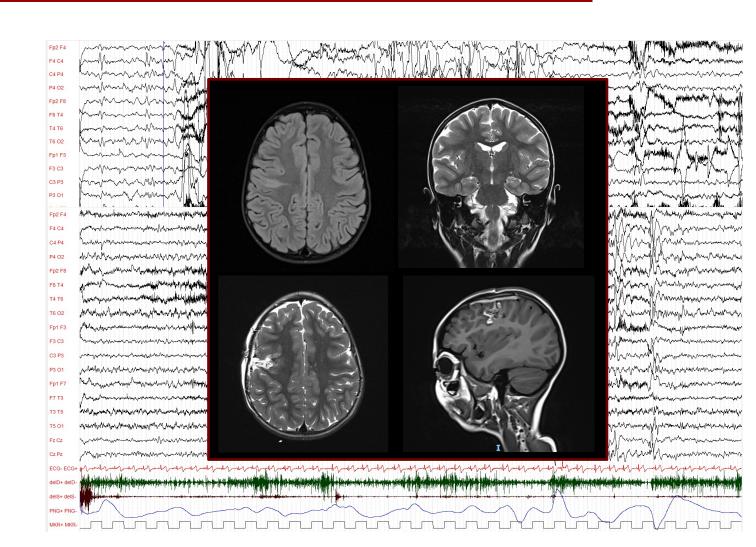


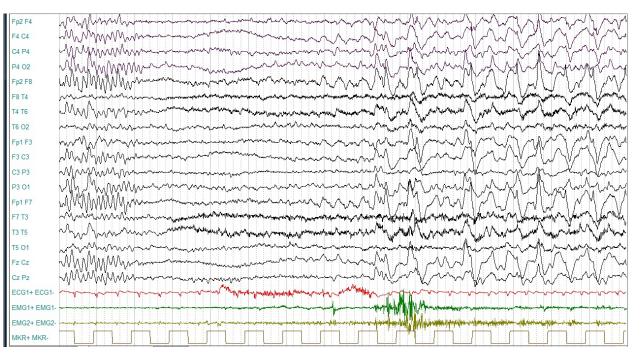
Bonini F, McGonigal A, Trébuchon A, Gavaret M, Bartolomei F, Giusiano B, Chauvel P. Epilepsia. 2014 Feb;55(2):264-77. doi: 10.1111/epi.12490. Epub 2013

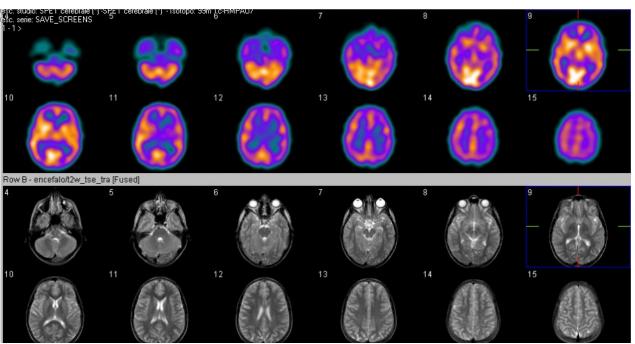
- One or more motor signs
- Somesthetic localized aura and tonic vocalization
- Absence of gestural motor behavior and of emotional features
- Early spread network: significant involvement of rolandic cortex, rolandic operculum, parietal cortex; minor involvement of lateral and medial premotor cortices.
- Ictal discharge: medial and lateral premotor regions at onset

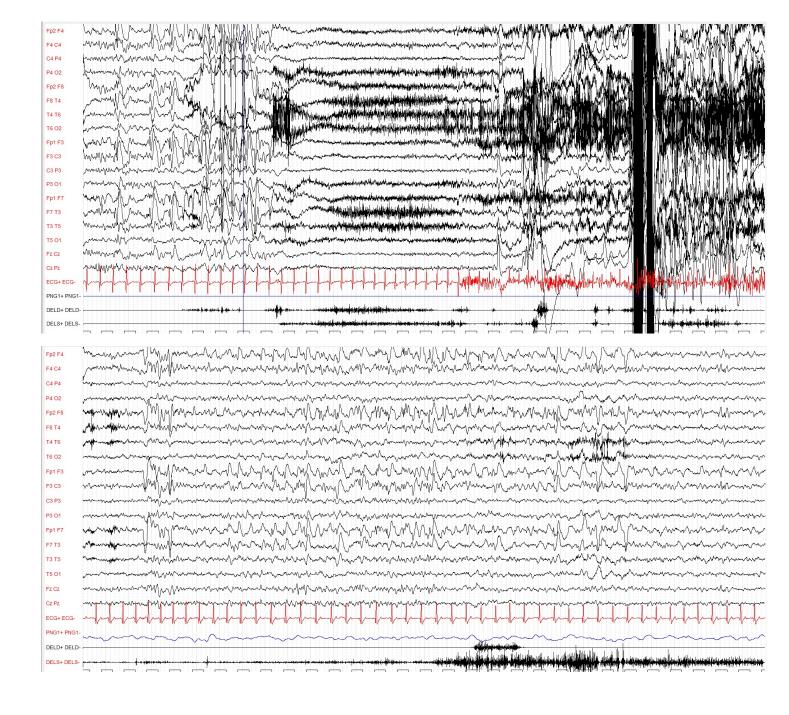

- Co-occurrence of elementary motor signs (typically symmetric axial tonic posture and facial contraction such as "chapeau de gendarme") and nonintegrated gestural motor behavior
- Nonlocalized aura and more complex nonverbal vocalization
- Absence of integrated gestural motor behavior, distal stereotypies, early clonic signs, and fixed facial expression
- Early spread network: both premotor and lateral prefrontal regions
- Ictal discharge: both medial and lateral aspect at onset

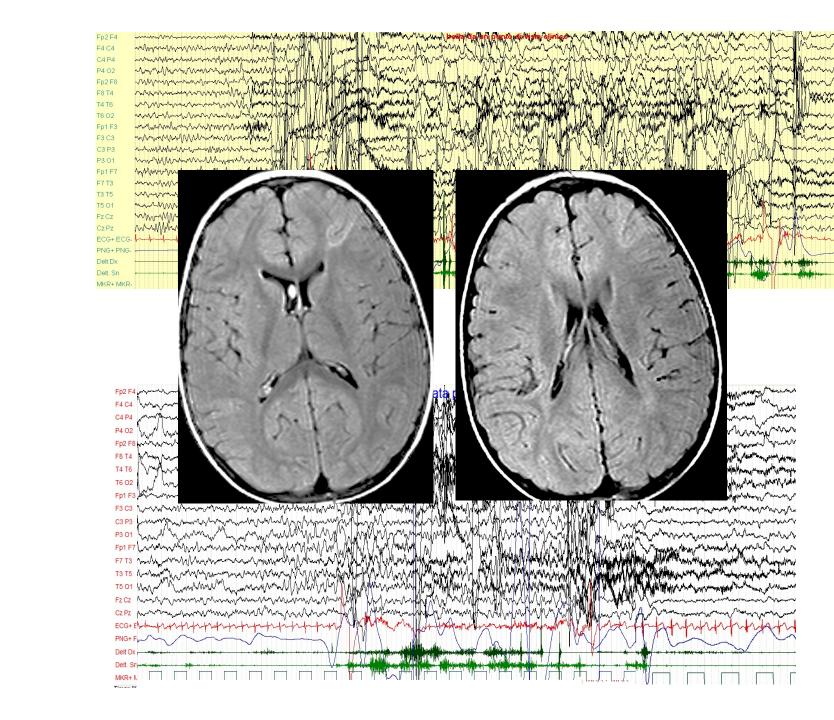
- Integrated gestural motor
 behavior with distal
 stereotypies, fixed facial
 expression or positive emotional
 expression, proximal
 stereotypies and speech
 production
- Absence of any elementary motor signs
- Early spread network and ictal discharge: rostral prefrontal ventrolateral regions, rostral cingulate gyrus

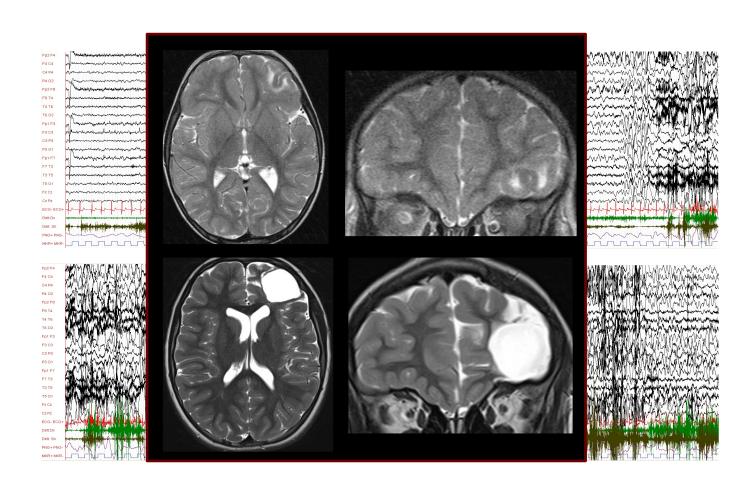

- Integrated gestural behavior of fear, sometimes hyperkinetic, with attempt to fight or to escape, frightened facial expression, sometimes screaming or swearing, and autonomic signs.
- Absence of elementary motor signs
- Early spread network and ictal discharge: orbital and medialprefrontal network with propagation to amygdala and anterior temporal regions

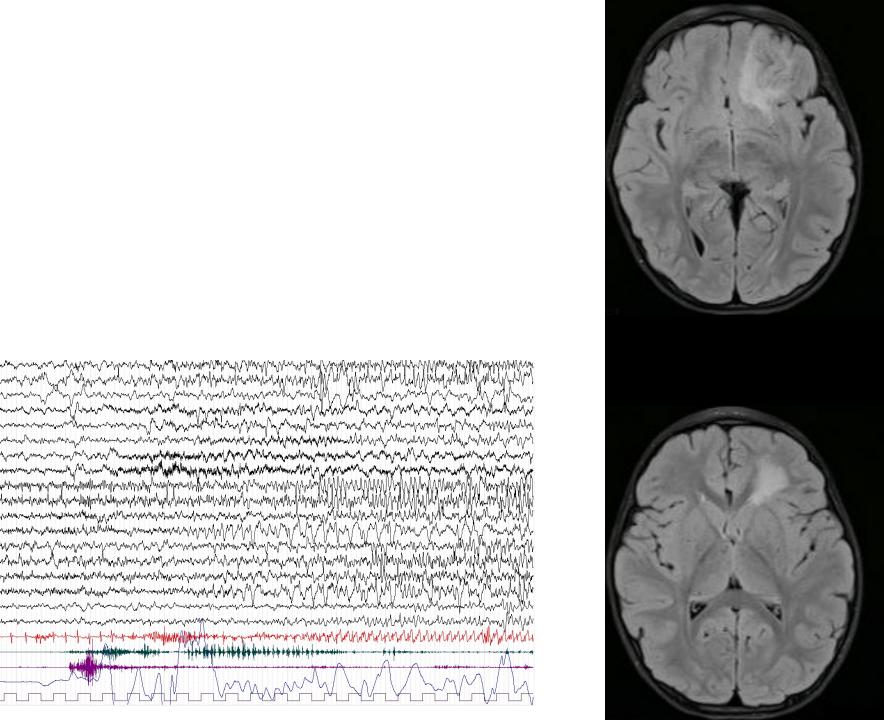



Group 1


Group 2






Group 4

Seizures roughly suggest the region but do not indicate the putative site of origin: the complexity of a typical semeiology

Fp2 F4

F4 C4

C4 P4

P4 O2

Fp2 F8

F8 T4

T4 T6

T6 O2

Fp1 F3 F3 C3

C3 P3 P3 O1 Fp1 F7 F7 T3 T3 T5 T5 O1 Fz Cz

Cz Pz

delt dx delt sn PNG2+ PNG2 MKR+ MKR-

ECG ECG

Difficulties with frontal lobe seizures

- Complex and multidirectional connectivity through distant cortico-cortical efferent pathways with rapid, widespread propagation of seizure discharges
- Seizures often with complex motor behavior, sometimes with emotional signs
- Semiologic patterns not consistently related to localization on seizure onset but to individual propagation pathways
- High reproducibility of the electroclinical pattern for a given patient's seizures but marked variation between patients
- Difficulties in characterizing electro-clinical patterns and in predicting epileptogenic zone
- Large cortex surface and regions far from EEG electrodes placed on the scalp

Conclusions (1)

- Semiologic and electrical patterns of frontal lobe seizures are difficult to characterize, and liable to be misleading in predicting localization of seizure onset
- Relation between semiologic patterns and sublobar localization remains unclear
- Marked variation exists between patients, making categorization and classification challenging
- The connectivity of frontal lobe associative areas supports spread through distant cortico-cortical pathways (multilobar and multidirectional),

Conclusions (2)

- Different etiologies without specific clinical features
- Seizure's semiology determinate by the site of onset and the regions involved in the propagation of the critical discharge
- Some deficits on executive functions, sometimes more severe after surgery
- Few studies about symptoms over time
- Few studies about specific semiology in children

<u>Acknowledgments</u>

Neurology

Marina Trivisano

Luca de Palma

Nicola Pietrafusa

Alessandro Ferretti

Paola De Liso

Chiara Pepi

Marta Conti

Lucia Fusco

Federico Vigevano

Clinical Trial Center

Susanna Livadiotti

Giorgia Copponi

Alessandra Simonetti

Giuseppe Pontrelli

Neurosurgery

Carlo Marras

Alessandro De Benedictis

Psychology

Simona Cappelletti

Ilaria Tondo

Simonetta Gentile

Neuroradiology

Daniela Longo

Camilla Rossi Espagnet

Lorenzo Figà-Talamanca

SPECT-PET

Carmen Garganese

Physics

Antonio Napolitano

Neuropathology

Francesca Diomedi

Genetics

Enrico Bertini

Antonio Novelli

Marco Tartaglia

Alessandra Terraciano

EEG Technicians

Giusy Carfi' Pavia

Claudia Volponi

Nurses

Tommaso Renzetti

Ilaria Pannacci

Costanza Calabrese

