

EEG in prolonged disorder of consciousness (vegetative state and minimally conscious state)

Anna Estraneo, MD

Neurology Unit, General Hospital, Nola,

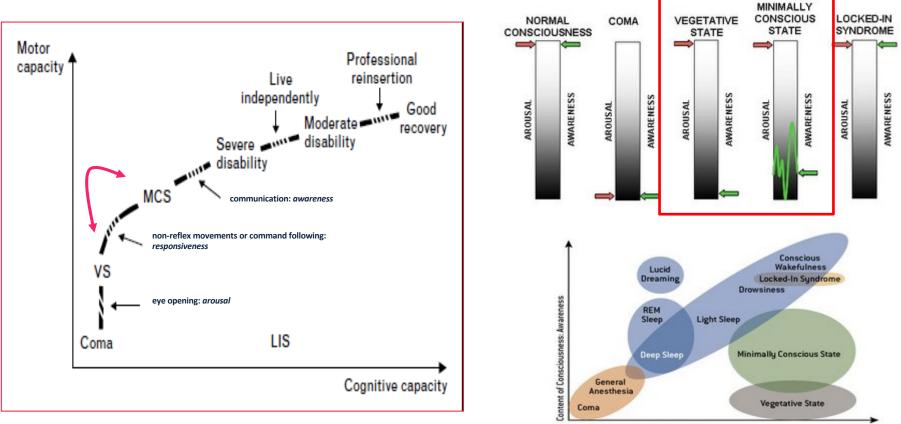
Don Gnocchi Foundation, Florence, Italy

aestraneo@gmail.com

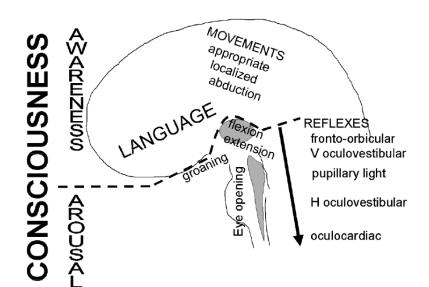
La dr.ssa Estraneo Anna dichiara l'assoluta autonomia

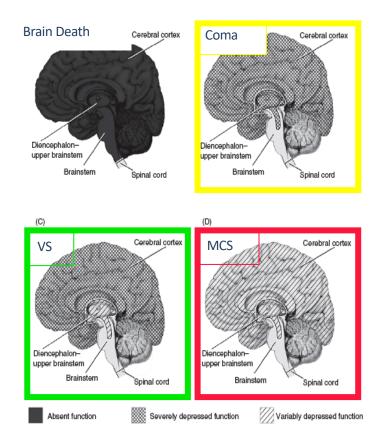
dei contenuti scientifici del proprio intervento ed

indipendenza da interessi economici commerciali con


possibili aziende sponsorizzatrici.

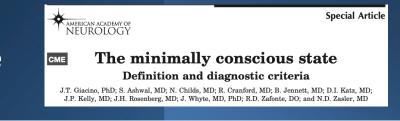
EEG in VS and MCS


- > Which patient
- EEG and PE in clinical diagnosis
- EEG and PE in prognostication
- EEG and seizure


Prolonged disorders consciousness

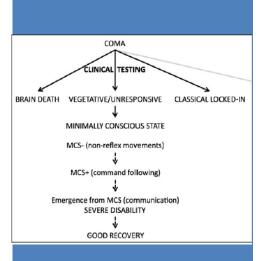
Level of Consciousness: Wakefulness

Consciousness components



Vegetative state/unresponsive wakefulness syndrome

- State of deep, unarousable unconsciousness (no intentional behavioral responses)
- Presence of arousal: patients with spontaneous eyes opening or in response to multisensorial stimuli
- Possible clinical (reflexive) behaviors:
- grimace in response to painful stimuli,
- stereotyped withdrawal responses of the limbs,
- no localizing responses or discrete defensive movements
- vocalization
- sound localization


Minimally conscious state

Inconsistent, but reproducible or sustained (long enough to be differentiated from reflexive behaviors) cognitively mediated behaviors:

- ✓ Following simple commands.
- ✓ Gestural or verbal yes/no responses (regardless of accuracy).
- ✓ Intelligible verbalization.
- ✓ Purposeful behavior to relevant environmental stimuli including:
 - pursuit eye movement or sustained fixation to moving or salient stimuli
 - appropriate smiling or crying to the linguistic or visual emotional stimuli
 - vocalizations or gestures in direct response to the linguistic content of questions
 - reaching for objects that demonstrates a clear relationship between object location and direction of reach
 - touching or holding objects in a manner that accommodates the size and shape of the object

Subcategorizing MCS patients

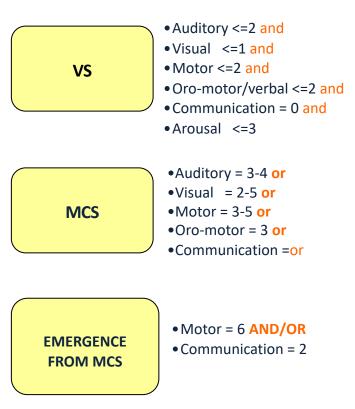
- MCS+ is defined by the presence of:
 - command following, or
 - intelligible verbalization or
 - gestural or verbal yes/no responses
- MCS- patients only show minimal levels of behavioural interaction, with non-reflex movements such as:
 - orientation to noxious stimuli, or
 - pursuit eye movements in response to moving or salient stimuli, or
 - movements or affective behaviors in relation to relevant stimuli (e.g., appropriate smiling or crying, vocalizations or gestures)

Emergence from MCS

1) Verbal or non-verbal functional communication

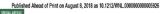
2) Functional object use: appropriate use of at least two different objects

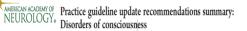
Giacino, Neurology 2002


Sources of diagnostic error:

- Aphasia
- Confusional state/post-traumatic amnesia (Nakase-Richardson, Neurology, 2009)
- Cognitive impairments

CLINICAL DIAGNOSIS CLINICAL SIGNS	СОМА	VEGETATIVE STATE	MINIMALLY CONSCIOUS STATE
Awareness	Absent	Absent	Partial
Awakening	Absent	Present	Present
Motor Function	Reflex abnormal posturing	Abnormal posturing or flexion withdrawal to noxious stimuli	Localization to noxious stimulation Reaching for object
Auditory function	Absent	Auditory startle Localization to sound	Reproducible movements to command Sustained visual fixation
Visual function	Absent	Visual startle	Visual pursuit Object recognition
Communication	Absent	Absent/afinalistic vocalization	Inconsistent but intelligible verbalization


This form should only be used in associ which provide instru												G GU	IDEL	INES		
•	cuons n	_			aui	iiiiis	aaac	11 01					_			
Patient:		Diagnosis: Etiology:														
Date of Onset:		Dat	e of	Adm	issio	on:	_	_	_	_	_	_	_	_	_	_
Da	te															
	ek ADM	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
AUDITORY FUNCTION SCALE																
4 - Consistent Movement to Command *																
3 - Reproducible Movement to Command *																
2 - Localization to Sound																
1 - Auditory Startle																
0 - None																
VISUAL FUNCTION SCALE																
5 - Object Recognition *																
4 - Object Localization: Reaching *																
3 - Visual Pursuit *																
2 - Fixation *																
1 - Visual Startle																
0 - None																
MOTOR FUNCTION SCALE											_					
6 - Functional Object Use [†]																
5 - Automatic Motor Response *																
4 - Object Manipulation *																
3 - Localization to Noxious Stimulation *																
2 - Flexion Withdrawal																
1 - Abnormal Posturing																
0 - None/Flaccid																
OROMOTOR/VERBAL FUNCTION SCALE		-	-													
3 - Intelligible Verbalization *		<u> </u>														
2 - Vocalization/Oral Movement																
1 - Oral Reflexive Movement																
0 - None																
COMMUNICATION SCALE		-	-						-	-	_		-	-		
2 - Functional: Accurate		<u> </u>	<u> </u>													
1 - Non-Functional: Intentional *													\vdash			-
0 - None													\vdash			
AROUSAL SCALE			-													
3 - Attention																
2 - Eye Opening w/o Stimulation			1										\vdash			
1 - Eye Opening with Stimulation			-	-				-								-
0 - Unarousable			1										\vdash			
TOTAL SCORE		-	-	-				-	-	-			\vdash	\vdash		-


Clinical diagnosis of pDoC

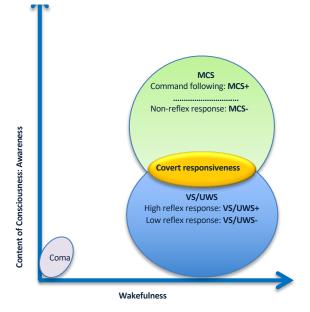
Denotes emergence from MCS Denotes MCS

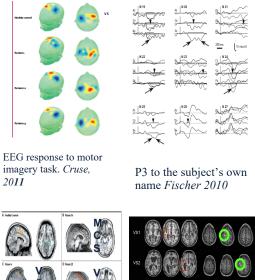
(Giacino et al, 2004)

Recommendation statement and level

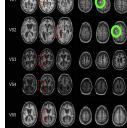
Clinicians should identify and treat conditions that may confound accurate diagnosis of a DoC prior to establishing a final diagnosis (Level B based on feasibility and cost).

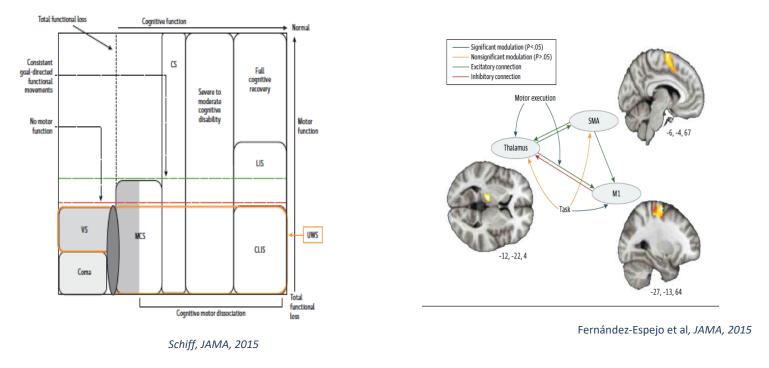
Subscore 1	Subscore 2	Possible Contributing Factors (When Scoring Errors Are Ruled Out)
Consistent command following (A4)*	Unarousable/no eye-opening (Ar0)*	Bilateral ptosis [§] ; facial oedema [§] ; eyelid apraxia [§]
Blink to threat (V1)*	Functional object use (M6)*	Bilateral optic nerve damage; Terson syndrome;
Blink to threat (V1)*	Functional communication (C2)*	cortical blindness
Visual fixation (V2)*	Unarousable (Ar0)*	Ptosis ⁵ ; eyelid apraxia ⁸
Object localization (V4)*	Unarousable (Ar0)*	
Object localization (V4)*	No motor response (MO)*	
Object recognition (V5)*	Abnormal posturing (M1)*	Severe spasticity
Object recognition (V5)*	Unarousable (Ar0)*	Ptosis ⁵ ; eyelid apraxia ⁸
Abnormal posturing (M1)*	Intelligible verbalization (Ve3)*	Severe spasticity
Functional object use (M6)*	Unarousable (Ar0)*	Ptosis [§] ; eyelid apraxia [§]
Functional communication (C2)*	Unarousable (Ar0)*	
Reproducible command following (A3) [†]	Functional communication (C2) †	N/A [‡]
Consistent command following $(A4)^{\dagger}$	No visual response (V0) †	Bilateral optic nerve damage; Terson syndrome; cortical blindness
Consistent command following (A4) [†]	No motor response (MO) [†]	Quadriplegia
No visual response (VO) [†]	Functional communication $(C2)^{\dagger}$	Bilateral optic nerve damage; Terson syndrome; cortical blindness
Visual fixation (V2) †	Functional communication (C2) †	Third and fourth cranial nerve palsy; ocular apraxia; visual agnosia
Visual pursuit (V3) [†]	Functional communication (C2) [†]	Ocular apraxia; visual agnosia
Object localization (V4) [†]	Functional communication (C2) [†]	Visual agnosia, hemineglect
Object recognition (V5) [†]	No motor response (MO) [†]	Quadriplegia
No motor response (M0) [†]	Functional communication (C2) [†]	Quadriplegia
Abnormal posturing (M1) [†]	Functional communication (C2) [†]	Severe spasticity
Flexion withdrawal (M2) [†]	Functional communication (C2) [†]	Severe spasticity, hypertonus or hypotonus
Localization to pain (M3) [†]	Functional communication (C2) [†]	Apraxia
Object manipulation (M4) [†]	Functional communication (C2) [†]	Severe spasticity, hypertonus or hypotonus; apraxia
Automatic motor response (M5) [†]	Functional communication (C2) [†]	Object agnosia; apraxia
No verbal response (Ve0) [†]	Functional communication (C2) [†]	Facial nerve palsy/oromotor weakness
Oral reflexive movement (Ve1) [†]	Functional communication (C2) [†]	
Vocalization (Ve2) [†]	Functional communication (C2) [†]	
Functional communication (C2) [†]	Eves open with stimulation (Ar1) [†]	N/A [‡]
Functional communication (C2) [†]	Eyes open without stimulation (Ar2) [†]	N/A [‡]


Chatelle et al., 2015



Article Covert Cognition in Disorders of Consciousness: A Meta-Analysis


Caroline Schnakers ^{1,*}⁽⁰⁾, Michaela Hirsch ², Enrique Noé ³, Roberto Llorens ^{3,4}, Nicolas Lejeune ⁵⁽⁰⁾, Vigneswaran Veeramuthu ⁶⁽⁰⁾, Sabrina De Marco ⁷⁽⁰⁾, Athena Demertzi ⁵, Catherine Duclos ⁸⁽⁰⁾, Ann-Marie Morrissey ⁹⁽⁰⁾, Camille Chatelle ⁵ and Anna Estraneo ^{10,11}


Motor or spatial imagery Monti, 2010

Activation to motor tasks in premotor area *Bekinschtein*, 2010

Modified from Laureys. 2005

Cognitive-motor dissociation

- ✓ Dissociation of measured bedside behavior (a lack of purposeful motor behavior) and fMRI or electrophysiologic evidence of command following
- ✓ Due to an underlying structural disruption between the motor cortex and the thalamus.

EEG in VS and MCS

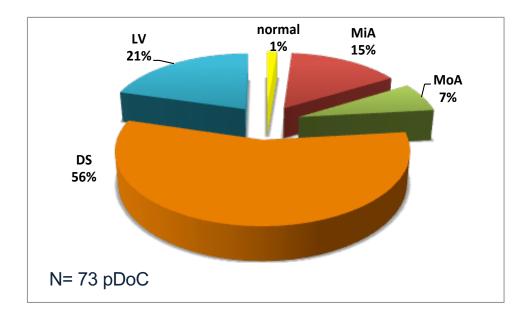
➤ Which patient

EEG and PE in clinical diagnosis

➢ EEG and PE in prognostication

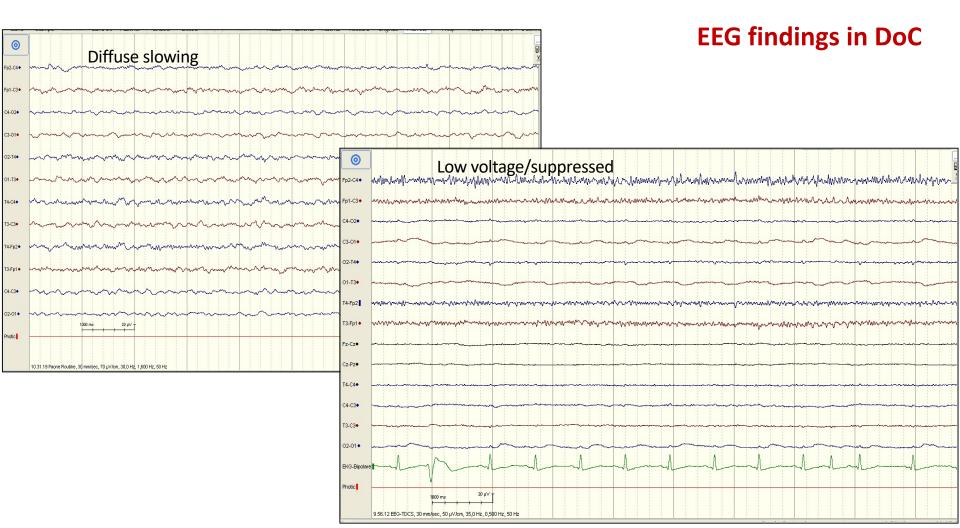
EEG and seizure

Clinical Neurophysiology 127 (2016) 2379-2385



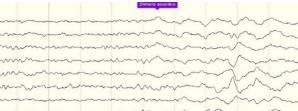
Standard EEG in	diagnostic process of	prolonged o	lisorders of
consciousness			

CrossMark


Anna Estra neo^{a, e}, Vincenzo Loreto^a, Ivan Guarino^a, Virginia Boemia^a, Giuseppe Paone^a, Pasquale Moretta^a, Luigi Trojano^b

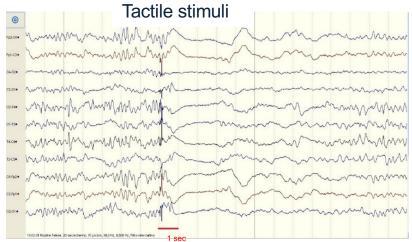
'Salvat ore Maageri Foundation, IRCCS, Scientific Institute of Tekse Terme (BN), Via Bagni Vecchi 1, 82037 Tulese Terme (BN), Italy 'Nauropsychology Lah, Dept. of Psychology, Second University of Naples, Male Elittico 31, 81100 Casenta, Italy

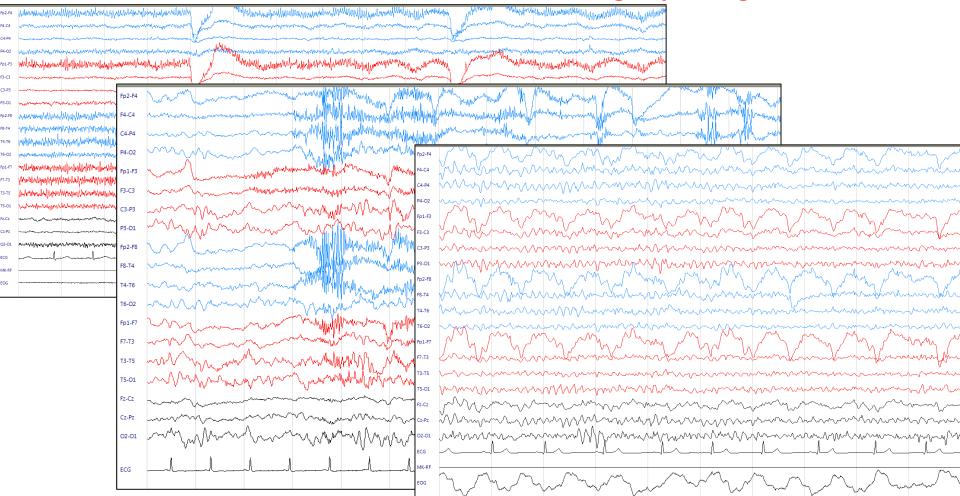
EEG findings in prolonged DoC


1. Normal: predominant α rhytms **2. MiA** (Mildly abnormal): θ (\geq 20) μ V), with frequent (10-49%) α **3. MoA** (Moderately abnormal) θ/δ \geq 20 μ V, with rare (1-9%)) α **4. DS** (Diffuse slowing): $\theta/\delta \ge 20 \mu V$ **5.** LV (Low voltage): $\theta/\delta < 20 \mu V$

EEG reactivity analysis

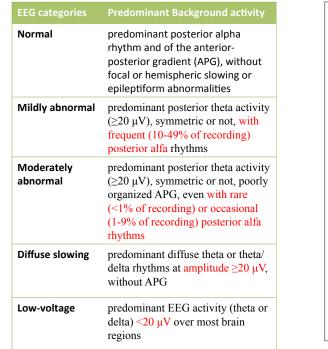
Presence of reactivity: change in frequency and/or amplitude (or attenuation) of the background activity in the 3-sec EEG activity after (eye closing, tactile, painful and acoustic) stimuli, with respect to the 3 seconds before

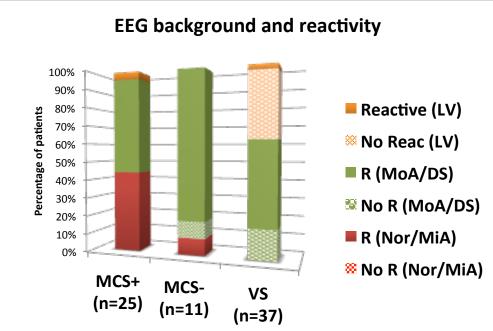



1000 mai 20 u/v m

11.55.53 Binono FzCzPz Routine Telese, 13 sec/soherine, 70 µV ion, 30.0 Hz, 0,500 Hz, Filtro rete inst

Auditory stimuli


Issue in EEG recording in prolonged DoC

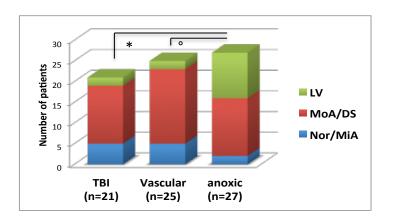


Cited Hexappudge 17/2013 (127-2014)

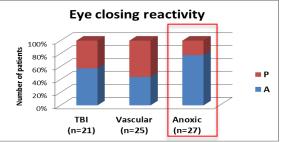
undation, IRCIS, Scientific Institute of Teinse Terms (BN), Via Bagri Vecchi 1, 82037 Talese ... Dent. of Parchologu, Second University of Naples, Vale Ellinico 31, 81100 Casenta, Italy

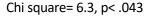
EEG background activity and reactivity as a function of clinical diagnosis

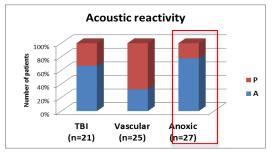
Sensitivity= 0.91; Specificity= 0.54; Youden Index= 0.48


EEG background activity and reactivity differ between VS and MCS- or MCS+

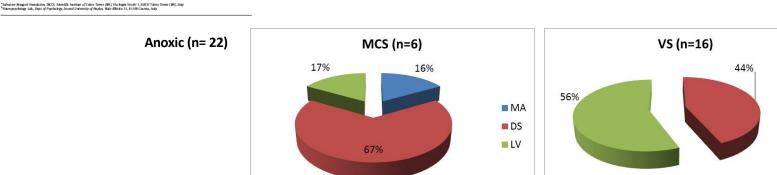
	Clinical Neurophysiology 127 (2016) 2379-2385	
	Contents lists available at ScienceDirect	6
19.25	Clinical Neurophysiology	-@-
ELSEVIER	journal homepage:www.elsevier.com/locate/clinph	1
Standard El consciousne	EG in diagnostic process of prolonged disorders of ess	CressMark
Anna Estraneo Pasquale More		
*Salvatore Maugeri Four *Nauropsychology Lab.,	rdation, IBCCS, Scientific Institute of Telese Terme (BN), Via Bagri Vecchi 1, 82037 Telese Terme (BN), Italy Dept. of Psychology, Second University of Naples, Male Ellatico 31, 81100 Caserta, Italy	


EEG findings in the 3 etiologies

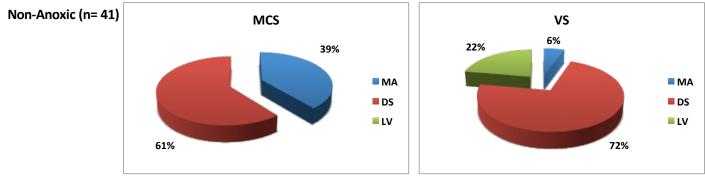

EEG background activity and reactivity to eye opening and closing and to acoustic stimuli are more impaired in anoxic patients


EEG and etiology

- ° Chi-square= 11.2, df= 2, p< .01
- * Chi-square= 9.7, df= 2, p< .01


Chi square= 11.97, p= .003

	Concar Houseprintering 127 (2010) 2.57 m 2.863	
1223232	Contents lists available at ScienceDirect	0
5 S. A.	Clinical Neurophysiology	
ELSEVIER	journal homepage: www.elsevier.com/locate/clinph	_
Standard E consciousn	EG in diagnostic process of prolonged disorders of ess	CrossMark
	p ^{a, e} , Vincenzo Loreto ^a , Ivan Guarino ^a , Virginia Boemia ^a , Giuseppe Paone ^a , etta ^a , Luigi Trojano ^b	


EEG findings In prolonged DoC

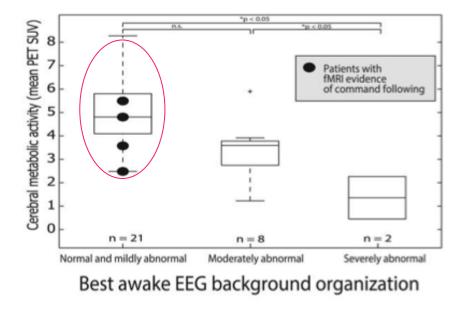
■ MA ■ DS

LV

Chi square= 4.6, df= 2, p= .1

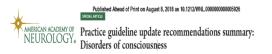
Chi square= 9.98, df= 2, p= .007

EEG for identifying covert cognition

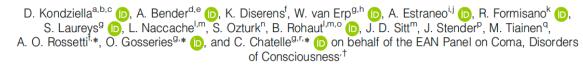

EEG classification (Forgacs et al., 2014):

1.Normal: dominant alpha rhythm, an amplitude difference <50% between hemispheres, with the expected AP gradient

2.Mildly abnormal: asymmetric or mildly slowed dominant rhythm (7-8Hz), not well organized AP gradient was, and/or mild degree of focal or hemispheric slowing


3. *Moderately abnormal*: dominant theta (4–7Hz) posterior rhythms and/or focal or hemispheric theta/delta range

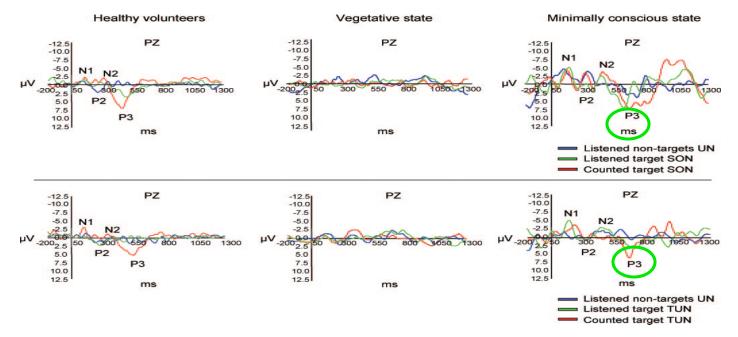
4. *Severely abnormal*: dominant delta (<4Hz) over most of the brain areas


Forgacs et al, Ann Neur, 2014

Conventional visual assessment of EEG organization is an accurate **measure of overall brain integrity** and helps **to identify patients with covert cognition** by the presence of normal or near-normal EEG features.

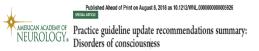
In situations where there is continued ambiguity regarding evidence of conscious awareness despite serial neurobehavioral assessments, or where confounders to a valid clinical diagnostic assessment are identified, clinicians may use multimodal evaluations incorporating specialized functional imaging or electrophysiologic studies to assess for evidence of awareness not identified on neurobehavioral assessment that might prompt consideration of an alternate diagnosis (Level C based on assessment of benefit relative to harm, feasibility, and cost relative to benefit).

European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness


Paper=2; pts=117

e0

Relative risk for detection of signs of covert consciousness with standard EEG as compared to clinical examination was **11.25** (95% CI 2.85-44.46; p=0.0006).


Visual analysis of clinical standard EEG may detect patients with preserved consciousness with high specificity but low sensitivity.

Diagnostic value of Event Related potentials

MCS patients presented a larger P3 to the patient's own name, in the passive and in the active conditions. The P3 to target stimuli was higher in the active than in the passive condition, suggesting voluntary compliance to task instructions like controls.

Schnakers, et al, Neurology, 2008

In situations where there is continued ambiguity regarding evidence of conscious awareness despite serial neurobehavioral assessments, or where confounders to a valid clinical diagnostic assessment are identified, clinicians may use multimodal evaluations incorporating specialized functional imaging or electrophysiologic studies to assess for evidence of awareness not identified on neurobehavioral assessment that might prompt consideration of an alternate diagnosis (Level C based on assessment of benefit relative to harm, feasibility, and cost relative to benefit).

European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness

D. Kondziella^{a,b,c} (b), A. Bender^{d,e} (c), K. Diserens^f, W. van Erp^{g,h} (c), A. Estraneo^{i,j} (c), R. Formisano^k (c), S. Laureys^g (c), L. Naccache^{l,m}, S. Ozturkⁿ, B. Rohaut^{l,m,o} (c), J. D. Sitt^m, J. Stender^p, M. Tiainen^q, A. O. Rossetti^{1,*}, O. Gosseries^{g,*} (c), and C. Chatelle^{g,r,*} (c) on behalf of the EAN Panel on Coma, Disorders of Consciousness^{-†}

Paper=14; pts=1298

ean

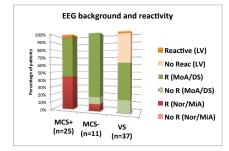
Relative risk for detection of signs of covert consciousness with ERP as compared to clinical examination was **1.49** (95% Cl 1.27 to 1.75; p < 0.0001).

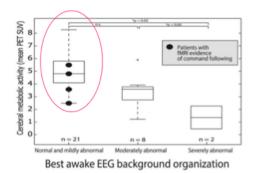
The sensitivity for all cognitive evoked potentials is low

Subgroup VS as function of neurophysiological data

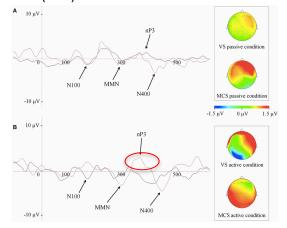
Pat	Aetiology	Sex (M, F)	Age (years)	Time from coma onset (months)	CRS	PVS or MCS	SEP (1 normal, 2 reduced, 3 absent)	BAEP (1 normal, 2 delayed, 3 abnormal)	MLAEP (1 normal, 2 reduced, 3 absent)	N100 (Present)	MMN (Present)	nP3 (Present)	P3b (Present)
1	Anoxia	М	54	5	4	PVS	2	1	3	No	No	No	No
2	Anoxia	Μ	34	8	10	MCS	1	1	1	No	No	No	No
3	Anoxia	Μ	44	13	7	PVS	3	1	2	No	No	No	No
4	Anoxia	F	72	6	4	PVS	3	2	3	No	No	No	No
5	Anoxia	Μ	35	72	9	MCS	1	1	2	No	No	No	No
6	Anoxia	F	22	71	7	PVS	3	1	2	No	No	No	No
7	Anoxia	F	49	40	7	PVS	1	1	1	Yes	Yes	Yes	No
8	Anoxia	М	34	14	5	PVS	3	1	1	No	No	No	No
9	Anoxia	Μ	68	4	5	PVS	3	2	2	No	No	No	No
10	Anoxia	F	53	6	4	PVS	3	1	3	No	No	No	No
11	Anoxia	М	31	201	11	MCS	2	1	1	Yes	No	No	No
12	Anoxia	М	47	81	6	PVS	3	1	3	No	No	No	No
13	Anoxia	Μ	26	73	5	PVS	3	1	3	No	No	No	No
14	Anoxia	M	38	59	11	MCS	2	3	1	Yes	NO	NO	NO
15	Anoxia	М	22	21	4	PVS	3	3	2	No	No	No	No
16	Anoxia	F	49	7	6	PVS	1	1	2	No	No	No	No
17	Anoxia	М	19	20	9	MCS	1	1		Yes	Yes	Yes	No
18	Anoxia	Μ	45	261	4	PVS	3	1	3	No	No	No	No
19	Encephalitis	Μ	48	13	11	MCS	1	1	1	Yes	Yes	Yes	No
20	TBI	Μ	24	15	7	PVS	2	2		Yes	No	Yes	Yes
21	TBI	Μ	52	37	10	MCS	1	1	1	No	No	No	No
22	TBI	F	44	59	9	MCS	1	1	1	Yes	No	Yes	No
23	TBI	М	48	12	11	MCS	2	3	1	Yes	No	No	No
24	Stroke	F	30	11	7	PVS	1	2	1	Yes	Yes	Yes	No
25	Stroke	М	56	8	14	MCS	1	2	1	Yes	Yes	Yes	Yes
26	Stroke	F	52	94	12	MCS	1	3	2	Yes	No	No	No
27	Stroke	F	49	11	5	PVS	1	1	1	Yes	No	No	No

Authentic VS Able to have sensations Preserved island


of cognition

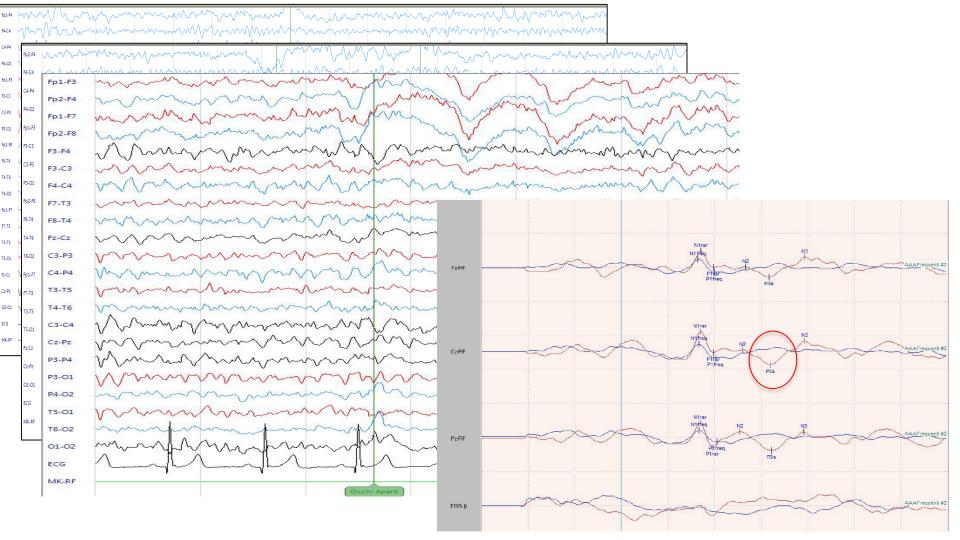

Practice guideline update recommendations summary: Disorders of consciousness

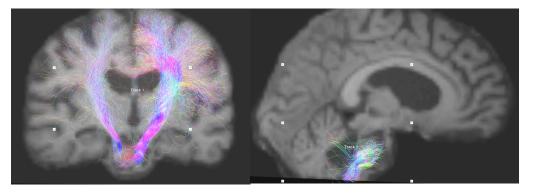
2e

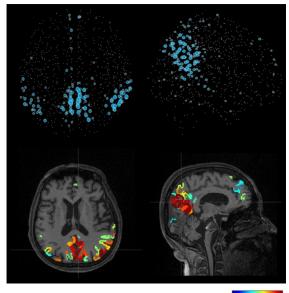

In situations where there is continued ambiguity regarding evidence of conscious awareness despite serial neurobehavioral assessments, or where confounders to a valid clinical diagnostic assessment are identified, clinicians may use multimodal evaluations incorporating specialized functional imaging or electrophysiologic studies to assess for evidence of awareness not identified on neurobehavioral assessment that might prompt consideration of an alternate diagnosis (Level C based on assessment of benefit relative to harm, feasibility, and cost relative to benefit).

Active listening of patients'own name (nP3) in MCS

Risetti et al, 2010

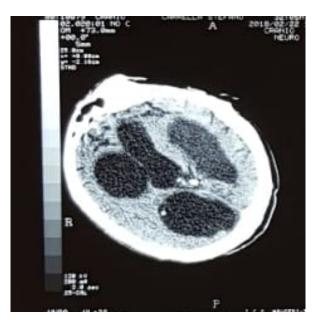

Forgacs et al, Ann Neur, 2014

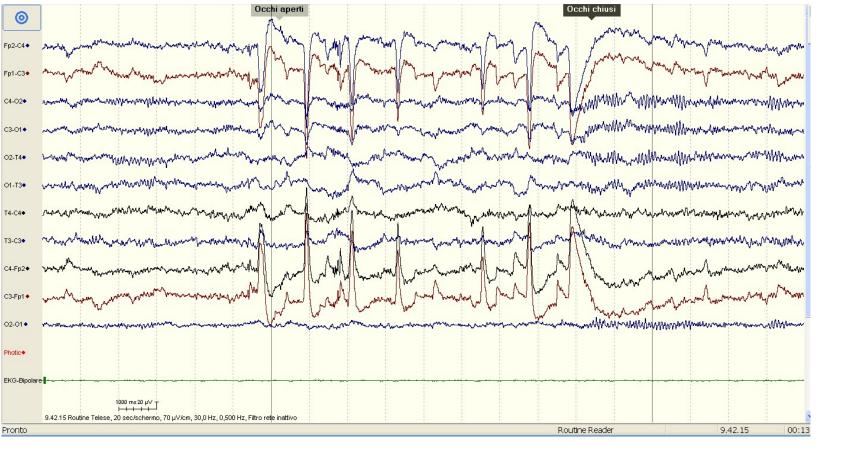



- ✓ 36-year-old woman
- ✓ severe haemorragic stroke
- ✓ 5 mos post injury
- ✓ CRS-R = 4 (VS)

Multimodal assessment

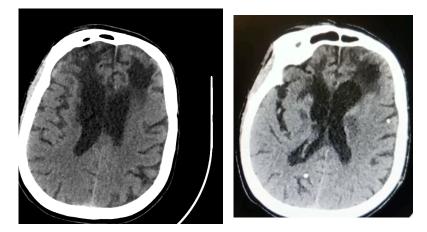
Locked-in syndrome Clinical variants

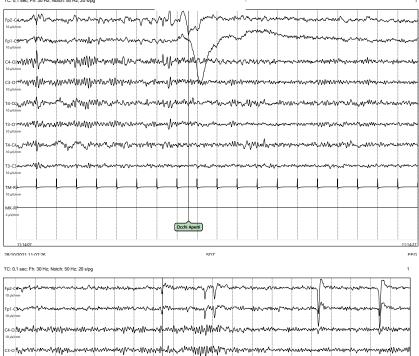

- <u>Classical LIS</u>: quadriplegia, anarthria, full consciousness, preserved vertical eye movements
- <u>Incomplete LIS</u>: variable residual intentional movements
- <u>Total LIS</u>: lack of any intentional response, full recovery of consciousness


Bauer et al., 1979

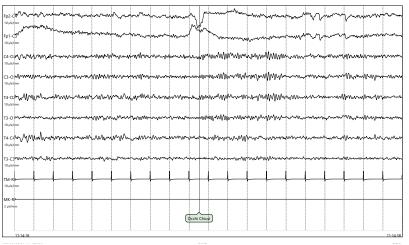
- ✓ 27-year-old man
- severe traumatic brain injury
- ✓ 23 mos after TBI

Chronic VS ?




Chronic eMCS !

- ✓ 60-year-old man
- Epilepsy from age 4
- ✓ convulsive status epilepticus
- ✓ 21 days after SE

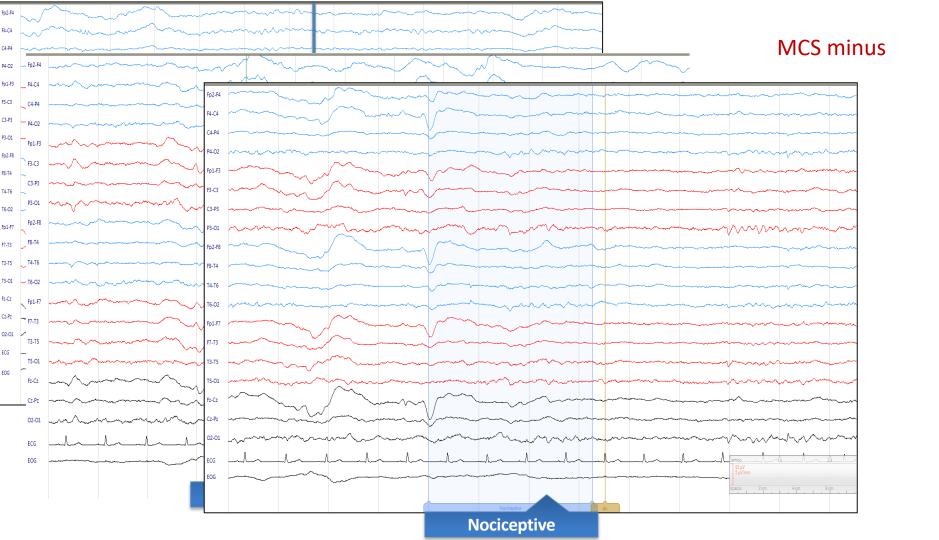


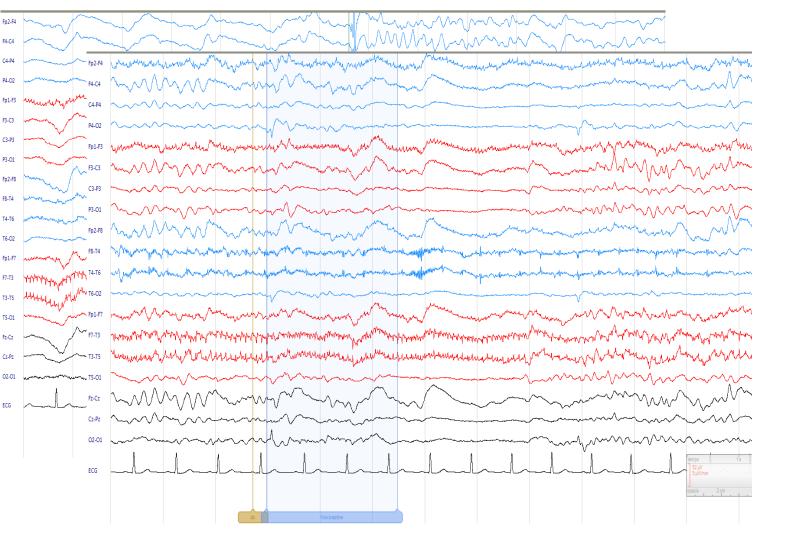
T3-0 Werner Manus Manus

ktimolo

10 µV/trem T3-C3

10 µV/mm


SDT


mannon

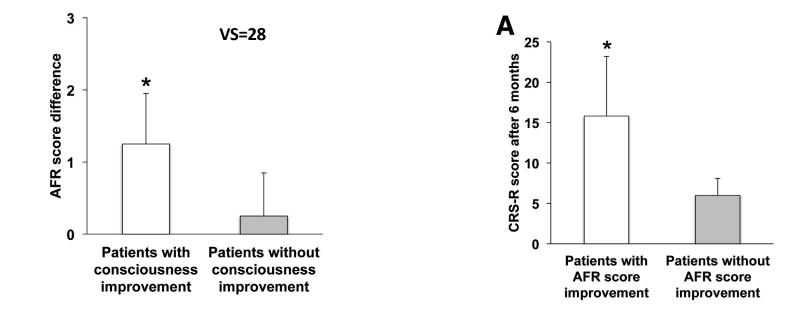
1:16:16 EEG

and in mania Mana

win hunner

MCS plus

man man when the for the second of the secon **EMCS** man man man man man man have a second mmmmm mannomment marter and a martine and the second and manufacture and a second and the en was many many many many www.www.www.www.www.www.www. **1[∿]в**-В when an an and the second when the second when the second se man when when the when the second when the second s monorman marked with Marine marine marine marine marine and a second and the second and man man man man man market and Milling and Marine Construction of Construction and the Second Street and the Second Street Second Street Second Street Second Street St mummer was well and the second an when the man when we have a second when when we want the second s mannaman mmm and an and the property of the way of the way of the second and the second and the second of the sec Man management and a strategy and the second and the approx.htempt.explor/explor warded and and the property where and property to be a property of the property of the property of the property monorman my my my my my my my any marked a papel of an and the second and the second and a second and a second and the second and the second when the one would be a property with the work of the second state Marken warman warman and and and Min Mark Mark TS.01 monorman and the second and the second of the second s www.www.www.www.www.www.www.www. www.www.www.www. and the second and the second and the second and the second secon how we were and the second were and the second were and the second were and the second were second and the second se Eye closing



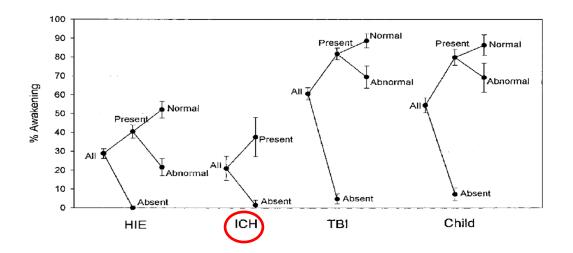
ORIGINAL RESEARCH

Changes in Standard Electroencephalograms Parallel Consciousness Improvements in Patients With Unresponsive Wakefulness Syndrome

Sergio Bagnato, MD, PhD,^a Cristina Boccagni, MD,^a Caterina Prestandrea, NphT,^a Alexander A. Fingelkurts, PhD,^b Andrew A. Fingelkurts, PhD,^b Giuseppe Galardi, MD^a The transition from the theta to the alpha band was the most common frequency change in patients who recovered consciousness

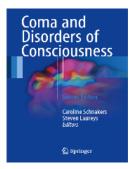
AFR= cumulative Amplitude-Frequency-Reactivity score

EEG in VS and MCS


➤ Which patient

➢ EEG and PE in clinical diagnosis

EEG and PE in prognostication


EEG and seizure

Prognostic value of SEP

Most available (neurophysiological) prognostic markers are collected in comatose state

Despite their clear utility, these simple measures are rarely recorded in most Intensive Care Units

Estraneo et. Al., Prognosis in DoC., In: Coma and DoC. 2018

Robinsons et al., 2005

Published Ahead of Print on August 8, 2018 as 10.1212/WNL.000000000005926

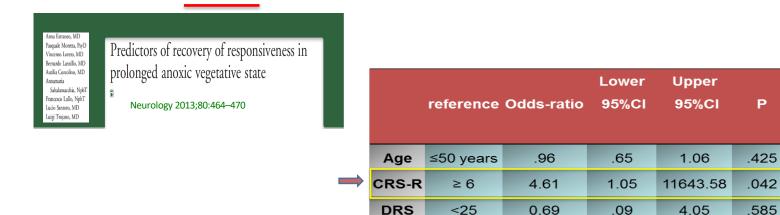
^YOF Disorders of consciousness

Nontraumatic, postanoxic VS/UWS: Clinicians should perform the CRS-R (Level B) and may assess SEPs (Level C based on feasibility) to assist in prognostication regarding recovery of consciousness at 24 months for patients in nontraumatic postanoxic VS/UWS.

Present

Present

1.29


17.88

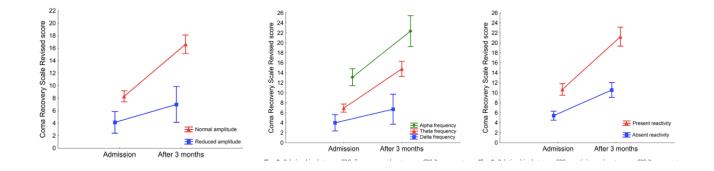
.02

1.37

972.17

6511.41

PSH


SEP

Estraneo et al. Neurology 2013

.921

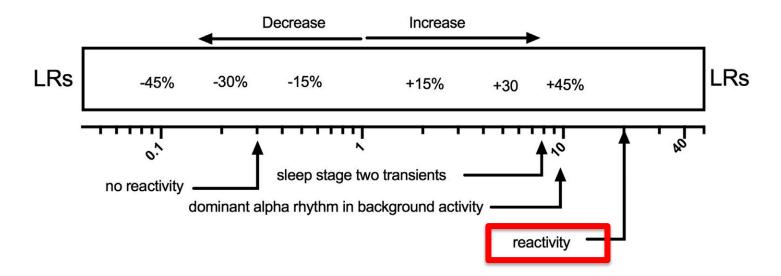
.026

n=106 traumatic, vascular, anoxic DoC (59 VS, 47 MCS). Outcome at 3 months

Reduced amplitudes => less improvement in CRS-R scores at 3 mos.

Delta, theta, and alpha frequencies => least, intermediate, and the greatest improvement in CRS-R scores, respectively.

EEG reactivity => greater improvements in CRS-R scores (*Bagnato, 2014*)


EEG parameters adapted from the American Clinical Neurophysiology Society's standardized critical care EEG Terminology, 2012

Beta	Alpha	Theta	Delta
Frequencies >1β Hz	Ranges from 8 to 13 Hz	Ranges from 4 to <8Hz	Refers to frequencies <4 Hz
Normal	Low Voltage	Suppression	Isoelectric
All activity >20 uV, measured in longitudinal bipolar with standard 10–20 electrodes from peak to trough	Most or all activity <20 uV measured in longitudinal bipolar with standard 10–20 electrodes from peak to trough (Attenuation refers to low voltage EEG but with most or all >10 uV)	Refers to all activity<10 uV >2uV	All activity 2 uV. No activity of brain origin is detectable at a sensitivity of 2 uV/mm: electrocerebral silence
Continuous	Nearly continuous	Discontinuous	Burst attenuation or Burst-
Normal or low-voltage EEG activity	Refers to continuous EEG activity, but with occasional (<10% of the record) periods of attenuation (>10 uV) or suppression (<10 uV)	10% to 49% of the record consisting of attenuation or suppression, as defined above	suppression >50% of the record consisting of attenuation or suppression, as defined above, with bursts alternating with attenuation o suppression
Reactive	Non Reactive		
Change in cerebral EEG activity to intense auditory and/or noxious stimuli. This may include change in amplitude or frequency, including attenuation of activity. If the only form of reactivity is stimuli induced rhythmic or periodic discharges or appearance of only muscle activity or eye blink artifacts, does not qualify as reactive	No change in cerebral EEG activity after intense auditory and painful stimuli		
	Frequencies >1β Hz Normal All activity >20 uV, measured in longitudinal bipolar with standard 10–20 electrodes from peak to trough Continuous Normal or low-voltage EEG activity Reactive Change in cerebral EEG activity to intense auditory and/or noxious stimuli. This may include change in amplitude or frequency, including attenuation of activity. If the only form of reactivity is stimuli induced rhythmic or periodic discharges or appearance of only muscle activity or eye blink	Frequencies >1β Hz Ranges from 8 to 13 Hz Normal Low Voltage All activity >20 uV, measured in longitudinal bipolar with standard 10–20 electrodes from peak to trough Most or all activity <20 uV measured in longitudinal bipolar with standard 10–20 electrodes from peak to trough	Frequencies >1β Hz Ranges from 8 to 13 Hz Ranges from 4 to <8Hz

Scarpino et al., 2019

N=102 DoC (61 VS, 41 MCS). Outcome: 6 mos after brain injury

posterior probability of improvement

EEG reactivity, alpha rhythm and presence of stage II sleep pattern => greater improvements in clinical diagnosis in VS patients only (*Scarpino et al, 2019*)

EEG parameters adapted from the American Clinical Neurophysiology Society's

standardized critical care EEG Terminology, 2012

Pattern	Prognostic value	score
Delta, Epileptic Dis, absence of reactivity and variability	Poor prognosis	0
Presence/Absence of APG, theta, A of II sleep patterns, A of Ep Dis, any item of EEG voltage, continuity and symmetry	No significant prognosis	1
alpha, Presence of EEG stage II sleep patterns, Presence of reactivity and variability).	Good prognosis	2

Scarpino et al., 2020

Multicenter prospective study on predictors of short-term outcome in disorders of consciousness

Neurology® 2020;95:e1488-e1499. doi:10.1212/WNL.000000000010254

Predictors of good clinical outcome at 6 months

Correspondence

aestraneo@gmail.com

Dr. Estraneo

Factor	Reference	β	OR	LCI 95%	UCI 95%	p	Bootstrapped-p	LASSO β
Age		-1.32	.26	.12	.54	< .001	< .001	81
Gender (M)	F	.85	2.35	.85	6.45	.09	.14	.60
Etiology (TBI)	Non-TBI	46	.62	.17	2.18	.46	.51	0
Time post injury		-1.30	.27	.14	.50	< .001	< .001	85
Diagnosis (MCS)	VS/UWS	-1.02	.36	.07	1.79	.21	.31	0
CRS-R		1.29	3.64	1.27	10.45	.01	.04	.58
DRS		35	.70	.37	1.32	.27	.34	17
EEG Background (Alpha)	Slow	.16	1.18	.41	3.36	.75	.75	.16
EEG-R Eye (Present)	Absent	1.65	5.21	1.45	18.75	.01	.02	1.15
EEG-R Acoustic (Present)	Absent	.92	2.51	.76	8.24	.12	.17	.57

Lower age, shorter time post-injury, higher CRS-R total score and presence of EEG eye opening reactivity predict better outcome (VS>MCS, VS or MCS to full consciousness)

DoC = 134; VS = 66 (24 improved); MCS = 68 (47 improved)

Factor	Reference	β	OR	LCI 95%	UCI 95%	p	Bootstrapped-p	LASSO β
Age		-1.71	.18	.08	.42	<.001	.001	-0.05
Gender (M)	F	1.42	4.15	1.26	13.60	.02	.02	0.96
Etiology (TBI)	Non-TBI	79	.45	.12	1.77	.26	.24	0
Time post-injury		-1.50	.22	.11	.47	<.001	.001	-0.04
Diagnosis (MCS)	VS/UWS	-1.04	.35	.06	2.08	.22	.29	0
CRS-R		1.55	4.72	1.38	16.17	.01	.01	0.17
NCS-R		.23	1.26	.70	2.26	.44	.47	0.02
DRS		49	.61	.30	1.24	.17	.25	-0.09
EEG Background (Alpha)	Slow	1.16	3.18	1.00	10.09	.05	.05	0.89
EEG-R Eye (Present)	Absent	1.49	4.46	1.18	16.83	.03	.03	0.88

Lower age, male gender, shorter time post-injury, higher CRS-R total score and presence of EEG eye opening reactivity predict better outcome (VS>MCS, VS or MCS to full consciousness)

EEG reactivity predicts minimal and full recovery of consciousness

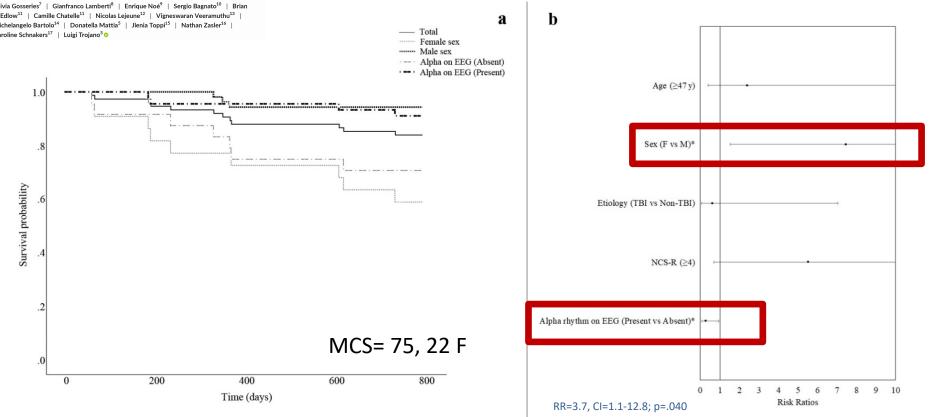
A Systematic Review and Meta-Analysis of the Relationship Between Brain Data and the Outcome in Disorders of Consciousness

Boris Kotchouboy1* and Yuri G. Pavlov12

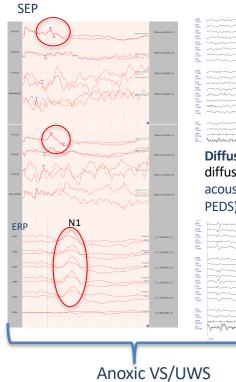
First author(s), Year	N				Eff	ect size [95% C
EEG entropy Wisłowska, 2017 Sitt, 2014 Sara, 2011 Wu, 2011 RE Model for Subgroup (Q = 10,47, N = 148, z = 1,7, c = 0,081	18 71 38 21 p = 0.01; I ² = 75.5%)		<u>+</u> +++++	+ ↓ ▶		0.38 [-0.42, 1.18 0.14 [-0.33, 0.60 1.93 [0.95, 2.92 0.43 [-0.30, 1.17 0.65 [-0.08, 1.37
EEG reactivity Logi, 2011 Sara, 2011 Li, Kang, 2015 RE Model for Subgroup (Q = 0.23, p N = 99, z = 5.5, p = 4.8 c - 08	50 38 11 = 0.89; f ² = 0.0%)		. TT.	₽ ₽		1.38 [0.75, 2.02 1.47 [0.25, 2.70 1.75 [0.40, 3.11 1.45 [0.93, 1.98
MMN Wijnen, 2007 Sitt, 2014 Hildebrandt, 2007 Wang, 2017 RE Model for Subgroup (Q = 9,15, p N = 112, z = 1.5, p = 0.13	10 71 20 11 = 0,03; i ² = 72,9%)	F				5.21 [1.77, 8.64 0.26 [0.25, 0.76 1.21 [0.18, 2.61 0.21 [-1.63, 2.06 1.10 [-0.32, 2.52
P300 Sitt, 2014 Wilpen, 2013 Steppacher, 2013 Hildebrandt, 2007 Wang, 2017 RE: Model for Subgroup (Q = 7.11, p N = 204, z = 0.97, p = 0.33	71 10 53 39 20 11 = 0.21; I ² = 33.0%)	11	┈ _{╋╵} ╋╋╋┿	■1 1		0.00 [-0.50, 0.50 1.29 [0.37, 2.21 0.14 [-0.59, 0.96 0.12 [-0.86, 1.09 -0.43 [-1.66, 0.75 0.21 [-1.63, 2.06 0.22 [-0.23, 0.66
RE Model for All Studies (Q = 65.63, N = 782, z = 4.8, p = 1.9c=06	p = 1 . 7e-05; I ² = 62 . 7%)		•			0.79 [0.47, 1.12
			i			
		-2	0 Effec	2 t size (Cohen's	6 d)	
Recove	ery of full	con				
ACCOV.	in VS ar			asires	•	


First author(s), Year	N		Effect size [95% CI]
EEG dominant rhythm			
Alekseeva, 2010	64	⊢∎1	1.83 [1.03, 2.62]
Bagnato, 2015	106	- - -	0.63 [0.23, 1.03]
Kotchoubey, 2005	43	H	1.32 [-0.31, 2.95]
RE Model for Subgroup (Q = 7.2	5, p = 0.03; 1 ² = 69.0%)	· • ·	1.18 [0.33, 2.04]
N = 213, z = 2.7, p = 0.0068			
EEG reactivity Bagnato, 2015	101		0 0 1 0 2 4 2 2
	101		0.80 [0.28, 1.33]
Kang, 2014	56		0.99 [0.34, 1.63]
Cavinato, 2009	34	 	1.62 [0.37, 2.87]
Bagnato, 2017	28	H	1.37 [-0.67, 3.41]
Li, Kang, 2015	11		2.06 [1.01, 3.12]
RE Model for Subgroup (Q = 5.2) N = 230, z = 4.8, p = 1.9e-06	5, p = 0.26; l ² = 33.3%)	•	1.19 [0.70, 1.68]
Synek scale			
Estraneo, 2013	43	⊢∎⊣	0.19 [-0.41, 0.79]
Cavinato, 2009	34	⊢ − −	0.98 [0.21, 1.75]
Boccagni, 2011	13		1.38 [-0.43, 3.19]
RE Model for Subgroup (Q = 3.3 N = 90, z = 1.8, p = 0.068		•	0.64 [-0.05, 1.33]
MMN			
Kotchoubey, 2005	43	-	0.78 [0.14, 1.43]
Hildebrandt, 2007	20	H	1.21 [-0.18, 2.61]
Wang, 2017	11	<	-0.82 [-2.90, 1.27]
RE Model for Subgroup (Q = 2.6 N = 74, z = 2.6, p = 0.01	0, p = 0.27; l ² = 0.0%)	•	0.74 [0.18, 1.30]
N20			
Kang, 2014	56		0.89 [0.25, 1.52]
Estraneo, 2013	43	į ⊢ −− −1	1.80 [0.99, 2.60]
Xu, 2012	36	l †≡ −1	0.35 [-0.19, 0.88]
Cavinato, 2009	34	⊢_ ∎	0.17 [-0.75, 1.08]
Keren, 1994 RE Model for Subgroup (Q = 11.	10 92, p = 0.02; l ² = 68.4%)		1.93 [0.03, 3.82] 0.89 [0.24, 1.54]
N = 179, z = 2.7, p = 0.0072			
Sleep spindles			
Wislowska, 2017	18	 - ■ - 1	1.47 [0.65, 2.29]
Kang, 2014	56		1.19 [0.52, 1.86]
Avantaggiato, 2015 RE Model for Subgroup (Q = 0.2	10 729, p = 0.87; i ² = 0.0%)		1.21 [-0.59, 3.02] 1.30 (0.80, 1.79]
P300			
Kotchoubey, 2005	43		0.00 [-1.11, 1.11]
Cavinato, 2009	43		2.61 [0.92, 4.30]
Li, Song, 2015	22		2.83 [0.59, 5.07]
Hildebrandt, 2007	20	⊢_ • ∔_1	-0.43 [-1.66, 0.79]
Wang, 2017	11		0.11 [-1.42, 1.64]
RE Model for Subgroup (Q = 13,			0.85 [-0.44, 2.14]
N = 130, z = 1,3, p = 0,2			
N = 1157, z = 6.9, p = 6.6e-12		i 🗣	
11 - 1107, 2 - 0.0, p = 0.00-12			_
		-2 0 2	6
		Effect size (Cohen's d)	
Mi	nimal cli	nical improvem	ent
		S, MCS => EMC	

ORIGINAL ARTICLE

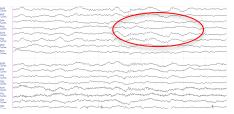

Risk factors for 2-year mortality in patients with prolonged disorders of consciousness: An international multicentre study

european journa of neurology



Survival curves and predictors in the MCS

Prognostic value of Neurophysiology



Diffuse slowing: predominant diffuse theta $\geq 20 \mu V$, reactivity to acoustic stimuli (with residual G-PEDS)

ł	have marked and the second of	
. *	- Marine Ma Marine Marine Mari	~~~~
1		
1		
	har a second and the second se	and the second of the second of the second s
	have a second and the second s	se.
. 1	Land and a start when the start when	-i~1
- n	where the second	~~~~
. 1	here have been a second and here a second se	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	- And Marine Marin	www.
- h		and and
ĥ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	- Commence and a management -	~ ~
		~~~~~
	man a start to be a start to the start of th	
. 1	may may board board front front front front front front front front	Burn
	a na ha ba na ama na na habarana a	41
	1024	* 22
	Acous	

t.

aant frequent tivity to rhythms lual G-

Mildly abnormal predominant posterior theta activity ($\geq 20 \mu$ V), with frequent (10-49%) posterior alfa

MCS

March, 2017

Dec, 2016 (20 days post onset)

From Grippo Antonello

EEG in VS and MCS

➤ Which patient

EEG and PE in clinical diagnosis

➢ EEG and PE in prognostication

EEG and seizure

Epileptic seizures in acquired brain injury

Acute symptomatic seizure

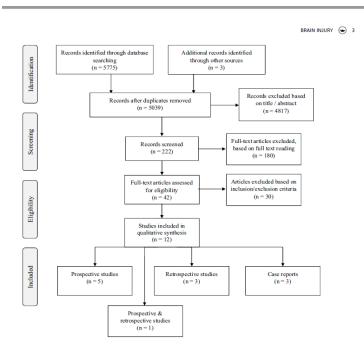
- occur in close temporal relationship with acute brain insult (i.e. within 1 week after an acquired brain injury);
- due to a temporary lowering of epileptic threshold resulting from such acute cerebral insult;
- are not necessarily characterized by a tendency for recurrence, but their occurrence is generally associated with a poor outcome (higher mortality at 30 days)

40-52 % of pts with acute seizure experience a late unprovoked seizures (Berg, 1991)

Remote symptomatic seizure

- developed after one week from brain injury;
- in absence of a potentially responsible clinical conditions (*unprovoked seizures*);
- depend on a structural chronic changes (e.g. gliosis) of the brain

Hesdoffer, 2009; Beghi 2010


Taylor & Francis

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ibij20

Epilepsy in prolonged disorders of consciousness: a systematic review

Nicolas Lejeune, Nathan Zasler, Rita Formisano, Anna Estraneo, Olivier Bodart, Wendy L. Magee & Aurore Thibaut

✓ The occurrence of ES/PTE and EA in pDoC was

poorly and inconsistently reported

- ✓ No conclusive data on
 - ✓ the effects of ASMs on recovery
 - ✓ the influence of any therapeutic interventions for consciousness recovery on seizure occurrence.

Epilepsy in prolonged DoC

CrossMark

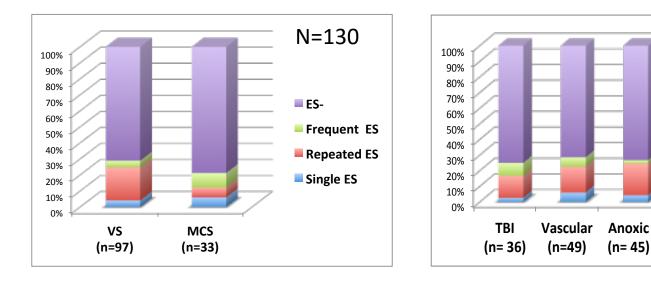
ORIGINAL COMMUNICATION

Epileptic seizure as a function of clinical diagnosis and etiology

N=130

Frequent ES

Repeated ES


Single ES

ES-

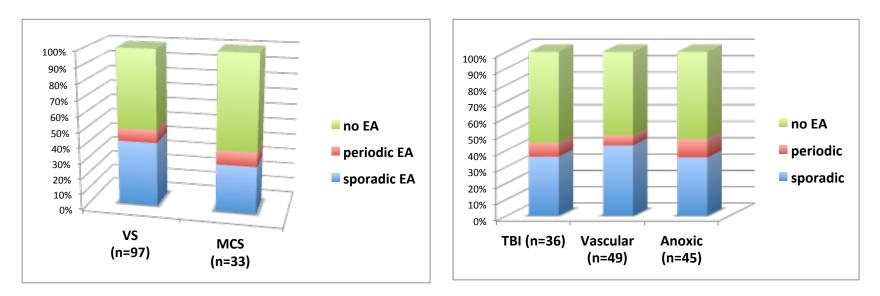
Long-term outcome of patients with disorders of consciousness with and without epileptiform activity and seizures: a prospective single centre cohort study

Angelo Pascarella¹ · Luigi Trojano² · Vincenzo Loreto¹ · Leonilda Bilo³ · Pasquale Moretta¹ · Anna Estraneo¹

ES in 26.9% DOC pts, without significant differences in the clinical diagnosis or etiology

(chi-square <1)

(chi-square <1)


ORIGINAL COMMUNICATION

EA as a function of clinical diagnosis and etiology

Long-term outcome of patients with disorders of consciousness with and without epileptiform activity and seizures: a prospective single centre cohort study

Angelo Pascarella¹ · Luigi Trojano² · Vincenzo Loreto¹ · Leonilda Bilo³ · Pasquale Moretta¹ · Anna Estraneo¹

EA in 46.9% of DOC pts, without significant differences in the clinical diagnosis or etiology

(chi-square <1)

(chi-square <1)

Interictal epileptic activity categorization (Hirsh, 2011)

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ibij20

Epilepsy in prolonged disorders of consciousness: a systematic review

Nicolas Lejeune, Nathan Zasler, Rita Formisano, Anna Estraneo, Olivier Bodart, Wendy L. Magee & Aurore Thibaut

SPORADIC EA	
Generalized	bilateral, bisynchronous and symmetric pattern
Lateralized	unilateral and bilateral synchronous but asymmetric; includes focal, regional and hemispheric patterns
Bilateral indipendent	presence of 2 independent [asynchronous] lateralized patterns, one in each hemisphere
Multifocal	presence of at least three independent lateralized patterns with at least one in each hemisphere
PERIODIC PATT	ERN
PLEDs biPLEDs GPEDs	Periodic lateralized epileptiform discharges Periodic bilateral epileptiform discharges Periodic generalized epileptiform discharges

SPORADIC EA FREQUENCY							
Abundant	≥ 1/10 seconds of EEG recording						
Frequent	≥ 1/minute but < 1/10 seconds of EEG recording						
Occasional	>1/30 minutes but < 1/minute of EEG recording						
Rare	=1/30 minutes of EEG recording						

EA recorded in at least one of two EEG whitin 15 days from admission

CrossMark

ORIGINAL COMMUNICATION

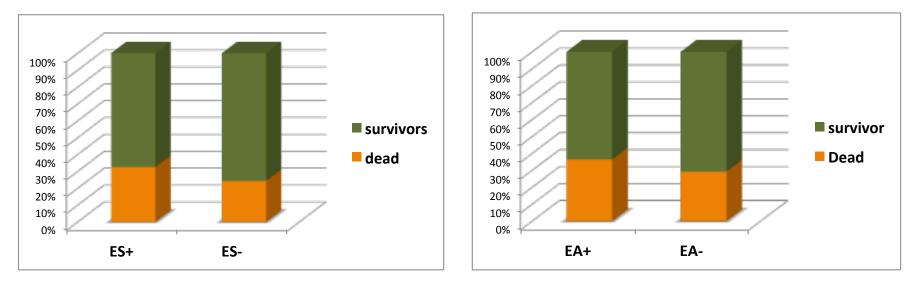
Long-term outcome of patients with disorders of consciousness with and without epileptiform activity and seizures: a prospective single centre cohort study

Angelo Pascarella¹ · Luigi Trojano² · Vincenzo Loreto¹ · Leonilda Bilo³ · Pasquale Moretta¹ · Anna Estraneo¹

Most often non-generalized, whereas generalized EA (sporadic and periodic) were present only in anoxic patients

Epileptic activity in prolonged DoC

EA N=130	Total	Clinical	diagnosis	Etiology			
IN-130		VS	MCS	TBI	Vascular	Anoxia	
N	61	48	13	16	24	21	
Sporadic EA	50 (82.0)	40 (83.3)	10 (76.9)	13 (81.2)	21 (87.5)	16 (76.2)	
Sporadic EA type							
Generalized	2 (4.0)	2 (5.0)	0 (0)	0 (0)	0 (0)	2 (12.5)	
Lateralized	38 (76.0)	29 (72.5)	9 (90.0)	11 (84.6)	18 (85.7)	9 (56.2)	
Bilateral indipendent	8 (16.0)	7 (17.5)	1 (10.0)	2 (15.4)	2 (9.5)	4 (2.5)	
Multifocal	2 (4.0)	2 (5.0)	0 (0)	0 (0)	1 (4.8)	1 (6.3)	
Sporadic EA							
quantification							
Abundant	9 (18.0)	8 (20.0)	1 (10.0)	4 (30.8)	1 (4.8)	4 (25.0)	
Frequent	25 (50.0)	20 (50.0)	5 (50.0)	4 (30.8)	13 (61.9)	8 (50.0)	
Occasional	11 (22.0)	10 (25.0)	1 (10.0)	3 (23.1)	4 (19.0)	4 (25.0)	
Rare	5 (10.0)	2 (5.0)	3 (35.0)	2 (15.4)	3(14.3)	0 (0)	
Periodic patterns	11 (18.0)	8 (16.7)	3 (23.1)	3 (18.8)	3 (12.5)	5 (23.8)	
Periodic patterns type							
LPDs	7 (63.6)	5 (62.5)	2 (66.7)	3 (100)	1 (33.3)	3 (60.0)	
GPDs BIPDs	2 (18.2)	2 (25.0)	0 (0)	0	0 (0)	2 (40.0)	
	2 (18.2)	1 (12.5)	1 (33.3)	0	2 (66.7)	0 (0)	


ES/EA and mortality of pDoC

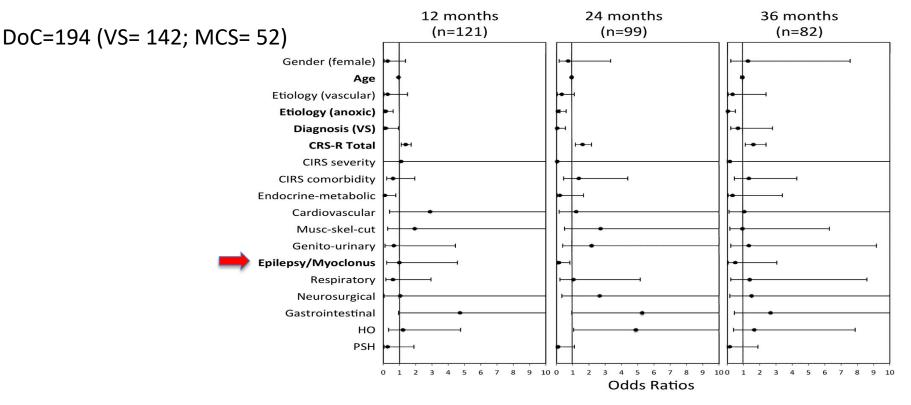
chi-square<1

ORIGINAL COMMUNICATION

Long-term outcome of patients with disorders of consciousness with and without epileptiform activity and seizures: a prospective single centre cohort study

Angelo Pascarella¹ · Luigi Trojano² · Vincenzo Loreto¹ · Leonilda Bilo³ · Pasquale Moretta¹ · Anna Estraneo¹

chi-square=1.69; df=1; p=.19



ORIGINAL RESEARCH

Do Medical Complications Impact Long-Term Outcomes in Prolonged Disorders of Consciousness?

Anna Estraneo, MD,^a Vincenzo Loreto, MD,^a Orsola Masotta, Psy,^a Angelo Pascarella, MD,^a Luigi Trojano, MD^{a,b}

ES and EA and long-term consciousness recovery

J Neurol (2016) 263:2048-2056 DOI 10.1007/s00415-016-8232-y CrossMark

ORIGINAL COMMUNICATION

Long-term outcome of patients with disorders of consciousness with and without epileptiform activity and seizures: a prospective single centre cohort study

Angelo Pascarella¹ · Luigi Trojano² · Vincenzo Loreto¹ · Leonilda Bão³ · Pasquale Moretta¹ · Anna Estraneo¹

Epileptic seizure and epileptic abnormalities

ES occurred in 26/61 (**42.6%**) patients with EA, and in only 9/69 (**13.0%**) DOC patients without EA on **two EEG** recorded at study entry

100% 90% 80% 70% 60% ES-50% 40% 30% ES+ 20% 10% 0% EA+ EA-EA+ EA-(1th EEG) (2 EEG) (1th EEG) (2 EEG)

...whereas taking into account the first EEG at study entry, ES and EA co-occurred in 11/34 (32.3%) patients, and in 24/96 (25.0%) patients without EA

Brain Injury

ISSN: (Print) (Online) Journal homepage: <u>https://www.tandfonline.com/loi/ibij20</u>

Epilepsy in prolonged disorders of consciousness: a systematic review

Nicolas Lejeune, Nathan Zasler, Rita Formisano, Anna Estraneo, Olivier Bodart, Wendy L. Magee & Aurore Thibaut

duration of EEG recording has been shown to increase the chance to detect epileptic abnormalities (EA) (56% of EA were detected during the first hour, 94% within 48 hours) (18), the repetition of 30-minute EEGs every 6 hours allows seizure detection with an accuracy of 92%

FFG to detect

seizures in DoC

 neither continuous EEG monitoring nor repeated EEG recordings are suitable for the long-term management of patients with DoC (due to movement artifacts on EEG, availability of human resources and equipment and time spent to analyze data among other reasons).

Concluding remarks

- Conventional EEG is easily available and repeatable at bedside
- Very severe EEG background activity (LV) and lack of EEG reactivity are most often found in VS patients and in anoxic DoC patients
- Normal or near normal EEG are more frequent in MCS, especially in MCS+, but the differences of EEG background and reactivity in the two subgroups of MCS patients are marginally significant
- In anoxic DOC patients EEG background activity is more impaired and provide less discriminative diagnostic information.

Concluding remarks

- ✓ Neurophysiological evaluation (standard EEG) could
 - detect negative influencing factors (eg. (Non) convulsive epileptic seizure, sleep activities)
 - monitor clinical evolution (EEG, ERP)
 - complement the diagnostic behavioral diagnosis (EEG, ERP)
 - provide prognostic information (EEG, SEP, ERP)
- Conventional EEG can provide useful diagnostic and prognostic information at group level (but not at individual level)
- Combining neurophysiological data and patients' clinical assessment could identify diagnostic and prognostic (sub) groups

Thank you for your attention

Anna Estraneo, MD Campana Biagio, MD De Bellis Francesco, Psy Magliacano Alfonso Psy Fiorenza Salvatore, TNFP Spinola Marcella, log Fasano Cinzia, log

Scientific collaborations

- Trojano L, Dept. Psychology, University Lugi Vanvitelli, Caserta, Italy
- Farisco M, Centro di Ricerche Genetiche Biogem di Ariano Irpino, Italy e Uppsala University, Sweden
- Soddu A., The University of Western Ontario, London ON, Canada
- Schnakers C, UCLA Department of Neurosurgery, Los Angeles, California (USA)
- Thibaut A, Gosseries O. Coma Science Group, Liège University, Belgium
- Molteni E, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
- Cavaliere C., SDN Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
- Formisano R., Fondazione Santa Lucia IRCCS, Roma
- Noè E. Neurorehab Valencia, Spain
- Eldow B. Harvard Medical School; Boston (USA)
- Cincotti F, Toppi J. Dept. of Computer, Control and Management Engineering, Sapienza University of Rome, Italy

